ĐỀ 1:
1. Tính:
a. dfrac{7}{23}left[left(dfrac{-8}{6}right)-dfrac{45}{18}right]
b. dfrac{1}{5}:dfrac{1}{10}-dfrac{1}{3}left(dfrac{6}{5}-dfrac{9}{4}right)
c. dfrac{3}{5}.left(dfrac{-8}{3}right)-dfrac{3}{5}:left(-6right)
d. dfrac{1}{2}left(dfrac{4}{3}+dfrac{2}{5}right)-dfrac{3}{4}left(dfrac{8}{9}+dfrac{16}{3}right)
e. dfrac{6}{7}:left(dfrac{3}{26}-dfrac{3}{13}right)+dfrac{6}{7}left(dfrac{1}{10}-dfrac{8}{5}right)
2. Tìm x, biết:
a. 1dfrac{2}{5}x+dfrac{3}{7}dfrac{4}{5}
b. |x - 1,5| 2
c. df...
Đọc tiếp
ĐỀ 1:
1. Tính:
a. \(\dfrac{7}{23}\left[\left(\dfrac{-8}{6}\right)-\dfrac{45}{18}\right]\)
b. \(\dfrac{1}{5}:\dfrac{1}{10}-\dfrac{1}{3}\left(\dfrac{6}{5}-\dfrac{9}{4}\right)\)
c. \(\dfrac{3}{5}.\left(\dfrac{-8}{3}\right)-\dfrac{3}{5}:\left(-6\right)\)
d. \(\dfrac{1}{2}\left(\dfrac{4}{3}+\dfrac{2}{5}\right)-\dfrac{3}{4}\left(\dfrac{8}{9}+\dfrac{16}{3}\right)\)
e. \(\dfrac{6}{7}:\left(\dfrac{3}{26}-\dfrac{3}{13}\right)+\dfrac{6}{7}\left(\dfrac{1}{10}-\dfrac{8}{5}\right)\)
2. Tìm x, biết:
a. \(1\dfrac{2}{5}x+\dfrac{3}{7}=\dfrac{4}{5}\)
b. |x - 1,5| = 2
c. \(\dfrac{4}{5}-\left|x-\dfrac{1}{6}\right|=\dfrac{2}{3}\)
d. 3x . 2x = 216
e. \(\dfrac{1}{2}\left(x-\dfrac{1}{3}\right)+\dfrac{-1}{2}=\dfrac{3}{4}\)
ĐỀ 2:
1. Tính:
A. left(-dfrac{2}{3}right)^2+left(-dfrac{7}{8}right)+left(-dfrac{11}{12}right)
B. left(dfrac{-1}{3}right)^2:dfrac{1}{6}-2.left(dfrac{-1}{2}right)^3
C. dfrac{-1}{5}-left(dfrac{1}{2}+dfrac{3}{4}right)^2:dfrac{5}{8}
D. left|dfrac{-3}{2}+1,2right|+1dfrac{2}{3}:6
2. Tìm x, biết:
a. dfrac{2}{3}x-dfrac{1}{3}xdfrac{5}{12}
b. left(x-dfrac{12}{7}right):1dfrac{1}{5}dfrac{4}{7}
c. dfrac{2}{5}+left|x+1right|dfrac{3}{4}
3. Tìm x, y biết:
a. dfrac{x}{18}dfrac{y}{15}và x - y -30
b. 7...
Đọc tiếp
ĐỀ 2:
1. Tính:
A. \(\left(-\dfrac{2}{3}\right)^2+\left(-\dfrac{7}{8}\right)+\left(-\dfrac{11}{12}\right)\)
B. \(\left(\dfrac{-1}{3}\right)^2:\dfrac{1}{6}-2.\left(\dfrac{-1}{2}\right)^3\)\
C. \(\dfrac{-1}{5}-\left(\dfrac{1}{2}+\dfrac{3}{4}\right)^2:\dfrac{5}{8}\)
D. \(\left|\dfrac{-3}{2}+1,2\right|+1\dfrac{2}{3}:6\)
2. Tìm x, biết:
a. \(\dfrac{2}{3}x-\dfrac{1}{3}x=\dfrac{5}{12}\)
b. \(\left(x-\dfrac{12}{7}\right):1\dfrac{1}{5}=\dfrac{4}{7}\)
c. \(\dfrac{2}{5}+\left|x+1\right|=\dfrac{3}{4}\)
3. Tìm x, y biết:
a. \(\dfrac{x}{18}=\dfrac{y}{15}\)và x - y = -30
b. 7x = 9x và 10x - 8x = 68
c. \(\left(x-\dfrac{1}{2}\right)^{50}+\left(y+\dfrac{1}{3}\right)^{40}=0\)
a. \(-4\dfrac{3}{5}.2\dfrac{4}{23}\)<x<\(-2\dfrac{3}{5}:1\dfrac{6}{15}\) b. \(-4\dfrac{1}{3}.\left(\dfrac{1}{2}-\dfrac{1}{6}\right)< x< -\dfrac{2}{3}\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)\)
Phương trình : \(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}=\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-1\right)\left(x-4\right)}\)
B = 1+ \(\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+.......+\dfrac{1}{x}\left(1+2+3+4+....+x\right)\)
Đáp án đề thi vòng 1:
Bài 1:
a, Adfrac{50-dfrac{4}{13}+dfrac{2}{15}-dfrac{2}{17}}{100-dfrac{8}{13}+dfrac{4}{15}-dfrac{4}{17}}dfrac{50-dfrac{4}{13}+dfrac{2}{15}-dfrac{2}{17}}{2left(50-dfrac{4}{13}+dfrac{2}{15}-dfrac{2}{17}right)}dfrac{1}{2}
Vậy Adfrac{1}{2}
b, Bdfrac{1}{19}+dfrac{9}{19.29}+dfrac{9}{29.39}+...+dfrac{9}{1999.2009}
dfrac{9}{9.19}+dfrac{9}{19.29}+dfrac{9}{29.39}+...+dfrac{9}{1999.2009}
dfrac{9}{10}left(dfrac{10}{9.19}+dfrac{10}{19.29}+dfrac{10}{29.39}+...+dfrac{10}{1999.2009}r...
Đọc tiếp
Đáp án đề thi vòng 1:
Bài 1:
a, \(A=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{2\left(50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}\right)}=\dfrac{1}{2}\)
Ta có: \(\left(\dfrac{b}{3c}\right)^3=\dfrac{a}{b}.\dfrac{b}{3c}.\dfrac{c}{9a}=\dfrac{1}{27}\Rightarrow\left(\dfrac{b}{3c}\right)^3=\left(\dfrac{1}{3}\right)^3\)
Thay vào \(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|=3\), ta thấy thỏa mãn
Vậy \(x=2014,y=2015\)
b, Giải:
Giả sử không có hai số nào trong 2013 số tự nhiên \(a_1,a_2,...,a_{2013}\) bằng nhau
Do đó, ta có: \(\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2013}}\le1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}< 1+\dfrac{1}{2}+\dfrac{1}{2}+...+\dfrac{1}{2}=1+1006=1007\)
Mâu thuẫn với giả thiết
Vậy ít nhất hai trong 2013 số tự nhiên đã cho bằng nhau.