\(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{3}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12};\dfrac{y}{12}=\dfrac{z}{20}\)
\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)
\(\Rightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)
\(=\dfrac{2x-3y+z}{18-36+20}\)
\(=\dfrac{6}{2}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.9=27\\y=3.12=36\\z=3.20=60\end{matrix}\right.\)
\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
\(\Rightarrow x.\dfrac{2}{3}=y.\dfrac{3}{4}=z.\dfrac{4}{5}\)
\(\Rightarrow x:\dfrac{3}{2}=y:\dfrac{4}{3}=z:\dfrac{5}{4}\)
\(\Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
\(=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}\)
\(=\dfrac{49}{\dfrac{49}{12}}=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=12.\dfrac{3}{2}=18\\y=12.\dfrac{4}{3}=16\\z=12.\dfrac{5}{4}=15\end{matrix}\right.\)
Ta có :
\(\dfrac{x}{3}=\dfrac{y}{4}=>\dfrac{x}{9}=\dfrac{y}{12}\left(1\right)\)
\(\dfrac{y}{3}=\dfrac{z}{5}=>\dfrac{y}{12}=\dfrac{z}{20}\left(2\right)\)
Từ (1),(2)=>\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)=\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{2x-3y+z}{18-36+20}=\dfrac{6}{2}=3\)
=>\(\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)
a)\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\Leftrightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)
Áp dụng tc dãy tỉ ....
b)\(\Leftrightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tc dãy tỉ ....
a, \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{9}=\dfrac{y}{12};\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)
\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{15}\Rightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{15}\)
Áp dụng t/c của dãy tỉ số = nhau ta có:
\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{15}=\dfrac{2x-3y+z}{18-36+15}=\dfrac{6}{-3}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}2x=-2\cdot18=-36\\3y=-2\cdot36=-72\\z=-2\cdot15\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-18\\y=-24\\z=-30\end{matrix}\right.\)
Vậy............................
b, \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng t/c của dts = nhau ta có:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=12\cdot\dfrac{3}{2}=18\\y=12\cdot\dfrac{4}{3}=16\\z=12\cdot\dfrac{5}{4}=15\end{matrix}\right.\)
Vậy.........
1, Tìm các số x,y,z, biết
a, \(Từ\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{3}=\dfrac{z}{5}\)=>\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{15}\)
=>\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{15}\)=\(\dfrac{2x-3y+z}{18-36+15}=\dfrac{6}{-3}=-2\)
=> x= -18;
=> y= -24;
=> z= -30
Vậy...
b, Từ \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:\
\(\dfrac{x+y+z}{\dfrac{49}{12}}=\dfrac{49}{\dfrac{49}{12}}=12\)
=> x= 18
=> y= 16
=> z= 15
Vậy.....
GOOD LUCK!!!