1)Vì n>1\(\Rightarrow\)n có dạng 2k,2k+1(k\(\in\)N*)
Xét n có dạng 2k\(\Rightarrow5^{2k}\)=\(25^k\) có 2 chữ số tận cùng là 25
Xét n có dạng 2k+1
\(\Rightarrow5^{2k+1}\)=\(5^{2k}\cdot5=25^k\cdot5\)
Vì \(25^k\) có 2 chữ số tận cùng là 25
\(\Rightarrow\)\(25^k\cdot5\) có 3 chữ số tận cùng là 125
\(\Rightarrow\)\(25^k\cdot5\) có 2 chữ số tận cùng là 25
Vậy trong trường hợp nào thì \(5^n\) luôn có 2 chữ số tận cùng là 25(n>1)
1)
Với mọi \(5^n\left(n>1\right)\) ta luôn thu được chữ số tận cùng là 25
2) Đề ra sai hoặc thiếu
3) \(2.2^2.2^3.2^4...2^{10}=2^{1+2+3+..+10}=2^{55}\)
\(5^2.5^4.5^6...5^{14}=5^{2+4+6+...+14}=5^{56}\)
\(\Rightarrow A=2^{55}.5^{56}=10^{55}.5\)
Do đó: A có tận cùng là 55 chữ số 0