=>42x+45y=35 và 35x-15y=14
=>x=11/21; y=13/45
=>42x+45y=35 và 35x-15y=14
=>x=11/21; y=13/45
giải hệ phương trình
\(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}+\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=4\end{matrix}\right.\)
giải các phương trình sau:
a,7+2x=32-3z
c,\(\dfrac{x}{3}+\dfrac{2x-6}{6}=2-\dfrac{x}{3}\)
b,\(\dfrac{x-1}{x}+\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)
d,\(\dfrac{x+1}{65}+\dfrac{x+3}{63}=\dfrac{x+5}{61}+\dfrac{x+7}{59}\)
lm giúp mk đi thanks nhìu
giải hệ phương trình bằng pp sd bđt:
\(\left\{{}\begin{matrix}x+y^2+z^3=14\\\left(\dfrac{1}{2x}+\dfrac{1}{3y}+\dfrac{1}{6z}\right)\left(\dfrac{x}{2}+\dfrac{y}{3}+\dfrac{z}{6}\right)=1\end{matrix}\right.\)
giai hpt
a.\(\left\{{}\begin{matrix}x=y+4\\2x+3=0\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}2x+y=7\\3y-x=7\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}5x+y=3\\-x-\dfrac{1}{5}y=\dfrac{-3}{5}\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}3x-5y=-18\\x-5=2y\end{matrix}\right.\)
1) Chứng minh rằng: \(x^3-7y=51\) không có nghiệm nguyên
2) Tìm nghiệm nguyên của phương trình \(x^2-5y^2=27\)
3) Tìm nghiệm nguyên dương
a) \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
b)\(\dfrac{1}{x}+\dfrac{1}{y}=z\)
Giải phương trình:
1. \(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\dfrac{6-2x}{\sqrt{5-x}}+\dfrac{6+2x}{\sqrt{5+x}}=\dfrac{8}{3}\)
4. \(x^2+1-\left(x+1\right)\sqrt{x^2-2x+3}=0\)
5. \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
6. \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{3}{2x-y}+\dfrac{5}{2x+y}=2\\\dfrac{1}{2x-y}-\dfrac{1}{2x+y}=\dfrac{2}{5}\end{matrix}\right.\)
Giải các hệ phương trình:
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y-5\right)=xy\\\left(x-2\right)\left(y+5\right)=xy\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{4}\\\dfrac{1}{6x}+\dfrac{1}{5y}=\dfrac{2}{15}\end{matrix}\right.\)
giải phương trình:
\(\dfrac{1}{2x^2-x+1}+\dfrac{1}{2x^2-x+3}=\dfrac{6}{2x^2-x+7}\)