Gọi 2 số tự nhiên liên tiếp đó lần lượt là a; a+1
Gọi UCLN(a;a+1)=d
Ta có:
(a+1)-a chia hết d
=>1 chia hết d
=>d=1
Vậy ta có 2 số tự nhiên liên tiếp có ước chung là 1
Giải:
Gọi 2 số tự nhiên liên tiếp đó là a, a + 1
Đặt \(d=UCLN\left(a;a+1\right)\)
Ta có: \(a⋮d\)
\(a+1⋮d\)
\(\Rightarrow a+1-a⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow UCLN\left(a;a+1\right)=1\)
\(\RightarrowƯC\left(a;a+1\right)=1\)
Vậy ước chung của 2 số tự nhiên liên tiếp là 1