Tìm tất cả các giá trị x,y,z thỏa mãn: \(\sqrt{x}+\sqrt{y-z}+\sqrt{z-x}=\dfrac{1}{2}\left(y+3\right)\)
Help me!!!
bài 1 : a) y= \(\dfrac{x}{x-2}\) b)y=\(\sqrt{1-x}\) c)y=\(\sqrt{x^2+2x+2}\) d)y=\(\sqrt{4-3x}+\dfrac{1}{x}\) bài 2 : xét tính đồng biến , nghịch biến a)y = f(x)=2x+1 b)y=\(\left(\dfrac{2+\sqrt{3}}{2-\sqrt{3}}+\dfrac{2-\sqrt{3}}{2+\sqrt{3}}\right)x-5\)
7) Cho hàm số y=\(\left(3-\sqrt{2}\right)x+1\). Tính giá trị của x khi y nhận các giá trị sau: 0; 1; 8; \(2+\sqrt{2}\) ; \(2-\sqrt{2}\)
Cho x,y dương thoả mãn (x+1)(y+1)=2. TÍnh giá trị biểu thức:
P= \(\sqrt{x^2+y^2-\sqrt{2\left(x^2+1\right)\left(y^2+1\right)}+2}+xy\)
a,Cho a +b =2 C/m \(B=a^5+b^5\ge2\)
b,Cho các số dường a,b,x,y t/m ĐK \(x^2+y^2=1\) và \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\).C/m \(\dfrac{x}{\sqrt{a}}+\dfrac{\sqrt{b}}{y}\ge2\)
c,Với x,y là các số dương t/m: \(\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2=2010\) .Tính \(A=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)
d,Chứng minh A=\(A=\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\) có giá trị là 1 số tự nhiên
cho hàm số \(y=\left(\sqrt{3}-1\right)x+5\) khi \(x=\sqrt{3}+1\) thì y nhận giá trị là
A. 5
B. 7
C .9
D.\(9+2\sqrt{3}\)
cho đồ thị của hàm số \(y=\sqrt{x^2+2x+1}-\sqrt{x^2-2x+1}\)
a) vẽ đồ thị của hàm số
b) từ đồ thị tìm Max và Min của y
1,Cho x,y là hai số thực dường thỏa mãn \(x^3+y^3=xy-\dfrac{1}{27}\)
Tính giả trị \(P=\left(x+y+\dfrac{1}{3}\right)^3-\dfrac{3}{2}\left(x+y\right)+2016\)
2,Cho \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2012^{2011}\).
Tính giá trị \(M=x\sqrt{1+y^2}+\sqrt{1+x^2}\)
Chứng minh hàm số sau là hàm bậc nhất. Các hàm số đó đồng biến hay nghịch biến? Vì sao?
a) y= 3( 2 - x )
b) y= \(\frac{x+7}{4}-\frac{1-3x}{6}\)
c) y= \(2\left(x^2+x+1\right)-x\left(2x+\sqrt{3}\right)\)
d) y= \(\frac{-x-2\sqrt{2}}{5}+\sqrt{2}+\frac{x}{6}\)