Bài 1 : (Mình chỉ tìm GTLN được thôi nha, bạn xem lại đề)
x2 + y2 + z2 < 3 ; mà x,y,z > 0 => \(\left(x;y;z\right)\in\left\{0;1\right\}\)
Ta thấy: (xy+1)-(x+y) = (1-x).(1-y)>=0
=> xy+1 > x+y
Tương tự:
yz+1 > y+z
xz+1 > z+x
Ta có:
(x+y+z).(1/(xy+1)+1/(yz+1)+1/(zx+1)) < x/(yz+1)+y/(zx+1)+z/(xy+1)
< x/(yz+1) + y/(zx+y) +z/(xy+z)
= x(1/(yz+1) -x/(xz+y) -y/(xy+z))
< x(1- z/(z+y) -y/(y+z))+5
= 5
Vậy GTLN là 5