Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Võ Thùy Linh

1. Cho x, y thỏa mãn x ≥ 0 ; y ≥0 và x+y = 1. Tìm giá trị lớn nhất và nhỏ nhất của

A = x2 + y2.

tthnew
12 tháng 7 2019 lúc 9:33

Em thử nha! Em không chắc đâu

*Tìm min:

Áp dụng BĐT Bunhicopki:

\(2A=2\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)

Suy ra \(A\ge\frac{1}{2}\)

Đẳng thức xảy ra khi x = y = 1/2

*tìm max:

Cách 1: \(A=\left(x+y\right)^2-2xy=1-2xy\) . Do x, y \(\ge0\Rightarrow xy\ge0\)

Do đó \(A=1-2xy\le1\)

Dấu "=" xảy ra khi (x;y) = (0;1) và các hoán vị

Cách 2: Theo đề bài suy ra \(0\le x\le1\Rightarrow x\left(x-1\right)\le0\Rightarrow x^2\le x\)

Tương tự với y rồi cộng lại suy ra \(A\le x+y=1\)

Xảy ra đẳng thức khi (x;y) = (0;1) và các hoán vị

tthnew
12 tháng 7 2019 lúc 14:15

HAy là cách này ạ?

Dễ thấy x, y không thể đồng thời bằng 0 (1)

Từ đề bài ta có: \(xy\ge0\). Mặt khác \(1=x+y\ge2\sqrt{xy}\Rightarrow xy\le\frac{1}{4}\)

Do đó \(0\le t=xy\le\frac{1}{4}\). Ta có:

\(A=\left(x+y\right)^2-2xy=1-2t\)

Từ đk suy ra \(\frac{1}{2}\le A\le1\)


Các câu hỏi tương tự
Lê Bảo Nghiêm
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Nguyễn Trọng Chiến
Xem chi tiết
Phạm Thị Mỹ Duyên
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
oooloo
Xem chi tiết
Nguyễn Đức Lâm
Xem chi tiết
Trương Võ Thanh Ngân
Xem chi tiết
Khôi Trần
Xem chi tiết
Niii
Xem chi tiết