Cho tam giác ABC có AB>AC,vẽ đường cao AH.
a,C/m:HB>HC
b,S2 goc BHA va CAH
c,Vé M,N sao cho AB,AC lần lượt là trung trực của các đoạn thẳng HM,HN.C/m:MAN là tam giác cân.
Tam giác cân ABC cos BC√5=AB√2=AC√2. Góc giữa hai đường thẳng chứa trung tuyến BM và CN bằng bao nhiêu?
Cho tam giác ABC đều cạnh a và \(\overrightarrow{AB}=3\overrightarrow{AM};\overrightarrow{AN}=k\overrightarrow{AC}\). Tìm k ở các trương fhowpj sau:
a, \(BN\perp CM\)
b, \(\left(\overrightarrow{BN};\overrightarrow{CM}\right)=120^o\)
Cho a, b, c là độ dài các cạnh của tam giác, S là diện tích tam giác. Chứng minh:
\(S=\dfrac{1}{4}\sqrt{a^4+b^4+c^4}\)
Sử dingj phương pháp biến đổi tương đương
Cho a, b, c là độ dài các cạnh của tam giác, S là diện tích tam giác. Chứng minh:
\(S\ge\dfrac{1}{4}\sqrt{a^4+b^4+c^4}\)
Sử dụng phương pháp biến đổi tương đương
Cho tam giác ABC có BC=a,AC=b,AB=c. Chứng minh rằng: \(3\left(a^3+b^3+c^3\right)+4abc\ge\dfrac{13}{27}\left(a+b+c\right)^3\)
Cho a, b, c là độ dài các cạnh của tam giác, S là diện tích tam giác. Chứng minh:
\(S\ge\dfrac{1}{4}\sqrt{a^2b^2+b^2c^2+c^2a^2}\)
Sử dụng phương pháp biến đổi tương đương
Cho tam giác ABC có a=3, b=6, c=\(\sqrt[]{17}\)
Cmr : \(\sin^2A+sin^2B=3sin^2C\)