Ta có hình vẽ:
a/ Xét tam giác AMD và tam giác CMB có
AM = MC (GT)
\(\widehat{AMD}\)=\(\widehat{CMB}\) (đối đỉnh)
MD = MB (GT)
Vậy tam giác AMD = tam giác CMB (c.g.c)
b/ Ta có: tam giác AMB = tam giác CMB (câu a)
=> \(\widehat{BCM}\)= \(\widehat{MAD}\)
Mà góc BCM; MAD ở vị trí so le trong
=> AD // BC (đpcm)
c/ Xét tam giác ABC và tam giác CDA có:
AC: cạnh chung
AD = BC (vì tam giác AMD = tam giác CMB)
\(\widehat{BCM}\)=\(\widehat{MAD}\)
Vậy tam giác ABC = tam giác CDA (c.g.c)
d/ Ta có: tam giác ABC = tam giác CDA (câu c)
=> \(\widehat{BAC}\) =\(\widehat{ACD}\)
Mà góc BAC; ACD ở vị trí so le trong
=> AB // CD (đpcm)