Cho tam giác MNP vuông tại M , góc MNP =60 độ . Trên canh NP lấy D sao cho NM = ND . Từ D kẻ đường thẳng vuông góc vs NP cắt MP tại A
a, CMR : NA là tia phân giác của góc MNP
b, tam giác NMD là tam giác gì ? vì sao
c, CMR : Tam giác NAP cân tại A và D là trung điểm NP
d, Trên tia đối MN lấy B sao cho MB = DP . CMR : tam giác APB cân tại A
e, CMR : D,A,B thẳng hàng
f, CMR : MD // BP
Cho tam giác ABC cân tại A ( A <90 độ) Vẽ phía ngoài tam giác là tam giác ABE vuông tại B. Gọi H là trung điểm BC. Trên tia đối tia Ah lấy I sao cho AI = BC . CM: BI = CE và BI ⊥ CE
Cho tam giác ABC vuông tại A với BD là đường phân giác. Đường thẳng vuông góc với AC tại C cắt tia BD tại E. CMR chi vi tam giác ABD nhỏ hơn tam giác CDE
cho tam giác abc vuông tại a kẻ đường cao CH trên tia đối của tia hc lấy d sao hc=hd
a)c/m tam giác ahc=tam giác ahd
b) gọi m là trung điểm của ad.c/m tam giác anm cân
c) điểm e là giao điểm của cn và dm c/m 3 điểm a,e,h thẳng hàng
Cho \(\Delta ABC\left(AB>AC\right)\) , M là trung điểm của BC . Đường thẳng đi qua M và vuông góc với tia phân giác của góc A tại H cắt 2 tia AB và AC lần lượt tại E và F . CMR : a) \(\dfrac{EF^2}{4}+AH^2=AE^2\)
b)\(2\widehat{BME}=\widehat{ACB}-\widehat{B}\)
c) \(BE=CF\)
d) \(AE=\dfrac{AB+AC}{2}\)
Cho tam giác ABC cân tại A . Tia phân giác của góc BAC cắt BC tại D
a) Chứng minh tam giác ABD bằng tam giác ACD
b) Trên tia đối của tia BC và CB lấy theo thứ tự hai điểm G và E sao cho BG=CE. Chứng minh tam giác AGE là tam giác cân
c) Từ B và C vẽ BH và CK theo thứ tự vuông góc với AG và AE.Chứng mình HK//BC