2, Ta có: A= \(\left(1+\dfrac{1}{x}\right)^2+\left(1+\dfrac{1}{y}\right)^2=1+\dfrac{2}{x}+\dfrac{1}{x^2}+1+\dfrac{2}{y}+\dfrac{1}{y^2}\)
\(=2+2\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{x^2}+\dfrac{1}{y^2}=2+2.\dfrac{x+y}{xy}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\)
\(=2+2.\dfrac{1}{xy}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\) ( do x+y=1)
Ta cm được BĐT : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với a, b >0
Áp dụng BĐT ta được: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{x^2+y^2}\) ( do x, y >0)
=> \(A=2+2.\dfrac{1}{xy}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge2+2.\dfrac{1}{xy}+\dfrac{4}{x^2+y^2}=2+\dfrac{4}{2xy}+\dfrac{4}{x^2+y^2}\)
Áp dụng BĐT ta được: \(\dfrac{4}{2xy}+\dfrac{4}{x^2+y^2}\ge\dfrac{16}{2xy+x^2+y^2}=\dfrac{16}{\left(x+y\right)^2}=\dfrac{16}{1}=16\) ( do x+y=1)
=> \(A\ge2+\dfrac{4}{2xy}+\dfrac{4}{x^2+y^2}\ge2+16=18\)
dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
vậy GTNN của A = 18 khi \(x=y=\dfrac{1}{2}\)