1 cho \(\int f\left(x\right)dx=F\left(x\right)+C\). Khi đó a#0 ,a,b là hằng số ta có \(\int f\left(ax+b\right)dx\) là
2 gia trị m để hàm số F(x) = \(mx^3+\left(3m+2\right)x^2-4x+3\)là một nguyên hàm của hàm số f(x) = \(3x^2+10x-4\) là
3 họ nguyên hàm của hàm số f(x)= \(\left(x^2-3x\right)\left(x+1\right)\)là
4 nguyên hàm của hàm số f(x) \(x^3-\frac{3}{x^2}+2^x\)
5 cho hàm số f(x) =\(e^{2019x}\) . Nguyên hàm \(\int f\left(x\right)dx\)là
6 tìm họ nguyên hàm của hàm số f(x) =sin2018x là
7 tìm họ nguyên hàm của hàm số f(x)=\(\frac{x^2-x+1}{x-1}\) là
8 cho hàm số f(x)=\(\left(2x+1\right)^3\) có một nguyên hàm F(x) thỏa F\(\left(\frac{1}{2}\right)=4\). Tính P =F\(\left(\frac{3}{2}\right)\)
9 hãy xác định hàm số F (x) = ax^3+bx^2+cx+1. Biết F (x) là một nguyên hàm của hàm số y=f(x) thỏa mãn f(1)=2,f(2=3 và f(3)=4
A F(x)= \(x^3+\frac{1}{2}x^2+x+1\)
B F (x) =\(\frac{1}{3}x^3+x^2+2x+1\)
C F(x)=\(\frac{1}{2}x^2+x+1\)
D F(x)=\(\frac{1}{3}x^3+\frac{1}{2}x^2+x+1\)
10 Cho F (x) là một nguyên hàm của y =\(\left(\frac{x-2}{x^3}\right)\). Nếu F (-1)=3 thì F(x) bằng
1.
\(\int f\left(ax+b\right)dx=\frac{1}{a}\int f\left(ax+b\right).d\left(ax+b\right)=\frac{1}{a}.F\left(ax+b\right)+C\)
2.
\(F'\left(x\right)=3mx^2+2\left(3m+2\right)x-4\)
Để F(x) là 1 nguyên hàm của \(f\left(x\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m=3\\2\left(3m+2\right)=10\\-4=-4\end{matrix}\right.\) \(\Rightarrow m=1\)
3.
\(\int\left(x^2-3x\right)\left(x+1\right)dx=\int\left(x^3-2x^2-3x\right)dx=\frac{1}{4}x^4-\frac{2}{3}x^3-\frac{3}{2}x^2+C\)
4.
\(\int\left(x^3-\frac{3}{x^2}+2^x\right)dx=\frac{1}{4}x^4-\frac{3}{x}+\frac{2^x}{ln2}+C\)
5.
\(\int e^{2019x}dx=\frac{1}{2019}\int e^{2019x}d\left(2019x\right)=\frac{1}{2019}e^{2019x}+C\)
6.
\(\int sin2018x.dx=\frac{1}{2018}\int sin2018x.d\left(2018x\right)=-\frac{1}{2018}cos2018x+C\)
7.
\(\int\frac{x^2-x+1}{x-1}dx=\int\left(\frac{x\left(x-1\right)}{x-1}+\frac{1}{x-1}\right)dx=\int\left(x+\frac{1}{x-1}\right)dx=\frac{1}{2}x^2+ln\left|x-1\right|+C\)
8.
\(F\left(x\right)=\int\left(2x+1\right)^3dx=\frac{1}{2}\int\left(2x+1\right)^3d\left(2x+1\right)=\frac{1}{8}\left(2x+1\right)^4+C\)
\(F\left(\frac{1}{2}\right)=4\Leftrightarrow\frac{1}{8}\left(2.\frac{1}{2}+1\right)^4+C=4\Rightarrow C=2\)
\(\Rightarrow F\left(x\right)=\frac{1}{8}\left(2x+1\right)^4+2\Rightarrow F\left(\frac{3}{2}\right)=\frac{1}{8}4^4+2=34\)
9.
\(f\left(x\right)=F'\left(x\right)=3ax^2+2bx+c\)
\(\left\{{}\begin{matrix}f\left(1\right)=2\\f\left(2\right)=3\\f\left(3\right)=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a.1+2b.1+c=2\\3a.2^2+2b.2+c=3\\3a.3^2+2b.3+c=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a+2b+c=2\\12a+4b+c=3\\27a+6b+c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=\frac{1}{2}\\c=1\end{matrix}\right.\)
\(\Rightarrow F\left(x\right)=\frac{1}{2}x^2+x+1\)
10.
\(F\left(x\right)=\int\frac{x-2}{x^3}dx=\int\left(\frac{1}{x^2}-\frac{2}{x^3}\right)dx=\int\left(x^{-2}-2x^{-3}\right)dx\)
\(=-1.x^{-1}+x^{-2}+C=-\frac{1}{x}+\frac{1}{x^2}+C\)
\(F\left(-1\right)=3\Leftrightarrow1+1+C=3\Rightarrow C=1\)
\(\Rightarrow F\left(x\right)=-\frac{1}{x}+\frac{1}{x^2}+1\)