Cho đường tròn (O) , điểm M nằm bên ngoài đường tròn . Kẻ tiếp tuyến MD ,ME với đường tròn (D,E là các tiếp điểm ) .Qua I thuộc cung nhỏ DE ,kẻ tiếp tuyến với đường tròn , cắt MD và ME theo thứ tự tại P và Q. Biết MD = 4cm . Tính chu vi tam giác MPQ
cho (O;R) từ điểm A nằm ngoài đường tròn (O) kẻ tiếp tuyến AB và AC (B,C là tiếp điểm)
từ điểm m thuộc cung nhỏ BC kẻ tiếp tuyến thứ 3 với đường tròn tiếp tuyến này cắt AB,AC lần lượt tại D và E. OD và OE lần lượt cắt BC tại I và K chưng minh OM,DE và IK đồng quy
Cho đường tròn O và đường thẳng d đi qua đường tròn nhưng không qua O
Lấy d cắt O tại hai điểm A,B . chọn điểm M thuộc O nằm ngoài đoạn AB
kẻ MC,MD là tiếp tuyến của (O), ( C,D thuộc (O) )
Kẻ hai tiếp tuyến của (O) cắt (O) tại A,B
giao điểm hai tiếp tuyến đó là I
CMR I,C,D thẳng hàng
1. Cho đường tròn
(O;3cm) và điểm A thỏa mãn OA=5cm. Kẻ các tiếp tuyến AB,AC với đường tròn. Gọi H là giao điểm của AO với BC.
a) Tính OH.
b) Qua điểm M bất kỳ thuộc cung nhỏ BC kẻ tiếp tuyến với (O) cắt AB,AC theo thứ tự tại D và E. Tính chu vi tam giác ADE.
Cho (O) và M nằm ngoài đường tròn. Kẻ hai tiếp tuyến MA, MB sao cho \(\widehat{AMB}=90^o\). Từ C trên cung nhỏ AB kẻ tiếp tuyến với đường tròn cắt MA, MB lần lượt ở P và Q. Biết R=5cm
a) Tứ giác AMOB là hình gì? Vì sao?
b) Tính chu vi tam giác MPQ
c) Tính \(\widehat{BOQ}\)
Cho đường tròn (O) và điểm S nằm bên ngoài đường tròn. Từ S kẻ tiếp tuyến SA và cát tuyến SBC tới đường tròn. Phân giác của góc BAC cắt BC ở D, cắt đường tròn ở E. Kẻ tiếp tuyến SA’ với đường tròn (O). Gọi H là giao điểm OS và AA’ , G là giao của OE và BS; F là giao của AA’ với BC. Trên tia AC lấy điểm Q sao cho AQ = AB. Chứng minh AO vuông góc DQ.
Cho (O;R) và 1 đường thẳng d cố định cắt (O) tại 2 điểm C, D. Một điểm M di động trên d sao cho MC>MD và ở ngoài (O). Qua M kẻ tiếp tuyến MA,MB với đường tròn. Gọi H là trung điểm của CD, gọi giao của AB với MO, CH lần lượt là E và F. Chứng minh:
a) \(CE.OM=R^2\)
b) Tứ giác MEHF nội tiếp
c) Đường thẳng AB đi qua 1 điểm cố định
Cho đường tròn (O;5cm), điểm M nằm ngoài đường tròn. Từ M kẻ các tiếp tuyến MA, MB với đường tròn (A; B là các tiếp điểm). Biết \(\widehat{AMB}=60^o\), tia AO cắt đường tròn tại điểm C.
a) Chứng minh: ΔAMB đều
b) Tính chu vi ΔAMB
c) Tứ giác BMOC là hình gì? Vì sao?
Cho đường tròn(O;R) và đường thẳng (d) không qua O cắt đường tròn tại hai điểm A và B.Từ một điểm M trên (d)(M nằm ngoài đường tròn (O) và A nằm giữa B và M),vẽ hai tiếp tuyến MC,MD của đường tròn (O)(C, D ∈ (O)).Gọi I là trung điểm của AB, tia IO cắt MD tại K
a)Chứng minh 5 điểm:M, C, I, O, D cùng thuộc 1 đường tròn
b)Chứng minh:KD.KM=KO.KI
c)Một đường thẳng đi qua O và song song với CD cắt các tia MC,MD lần lượt tại E,F.Xác định vị trí của điểm M trên đường thẳng (d) sao cho diện tích △MEF đạt giá trị nhỏ nhất.