1) P= 3\(xyz^2.\left(\dfrac{-1}{4}y^2z\right).4xz\)
P= \(\left(3.(\dfrac{-1}{4}).4\right)\left(x.x\right).\left(y.y^2\right)\left(z^2.z.z\right)\)
P= -3\(x^2y^3z^4\)
Bậc của đơn thức P là 9
b) Thay \(x=1;y=\dfrac{-1}{2};z=-1\) ta có
P= -3.(-1)\(^2.\left(\dfrac{-1}{2}\right)^3.\left(-1\right)^4\) = -3.1.\(\dfrac{-1}{8}\).1 = \(\dfrac{3}{8}\)
Vậy thay \(x=1;y=\dfrac{-1}{2};z=-1\) vào biểu thức P bằng \(\dfrac{3}{8}\)
2) M+N = \(-2x^3y-xy+x^2-6\)
M+N = \([\)(-2)\(+\left(-1\right)+1+\left(-6\right)\)\(]\) \(.\left(x^3.x.x^2\right).\left(y.y\right)\)
M+N = \(-8x^6y^2\)
M-N = \(-3x^3y-5x^2-4xy+1\)
M-N = (\(-3-5-4+1\)).\(\left(x^3.x^2.x\right).\left(y.y\right)\)
M-N = \(-11x^6y^2\)