Xét \(\Delta BEM;\Delta MCF\) có :
\(\widehat{BEM}=\widehat{MFC}\)
\(BM=MC\)
\(\widehat{BME}=\widehat{FMC}\)
\(\Leftrightarrow\Delta BEM=\Delta CFM\left(ch-gn\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}ME=MF\\BE=CF\end{matrix}\right.\)
Xét \(\Delta BEM;\Delta MCF\) có :
\(\widehat{BEM}=\widehat{MFC}\)
\(BM=MC\)
\(\widehat{BME}=\widehat{FMC}\)
\(\Leftrightarrow\Delta BEM=\Delta CFM\left(ch-gn\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}ME=MF\\BE=CF\end{matrix}\right.\)
cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC, kẽ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Gọi K là trung điểm của È. Từ C kẻ đường thằng song song vs AM cắt tia BA tại D chứng minh A là trung điểm BD
Cho tam giác ABC có M là trung điểm BC . Kẻ BE vuông góc AM tại E , CF vuông góc với AM tại F .
a/ Chứng minh : tam giác BEM= tam giác CFM
b/ chứng minh : BE=CF
c/ chứng minh : BF//CE
Cho tam giác ABC vẽ điểm M là trung điểm BC trên tia đối của tia MA lấy điểm D sao cho MA=MD
a) CM tam giác ABM= tam giác DCM
b) CM AB//DC
c) kẻ BE vuông góc với AM CF vuông góc với DM CM M là trung điểm của đoạn thẳng Ef
Bài 4: Cho ΔABC vuông tại A, đường phân giác BD (BDϵAC). Từ D kẻ DH vuông góc với BC.
a) C/m ΔABD=ΔHBD.
b) So sánh AD và DC.
c) Gọi K là giao điểm của đường thẳng AB và DH, I là trung điểm của KC. C/m 3 điểm B, D, I Thẳng hàng.
Trên tia đối của các tia BC và CB của ΔABC cân tại đỉnh A lấy theo thứ tự 2 điểm D và E sao cho BD= CE
a. CMR: ΔACE= ΔADB. Từ đó suy ra ΔACE cân tại A
b. Gọi AM là trung tuyến của ΔABC. Chứng minh AM là tia phân giác của góc DAE
c. Từ B và C kẻ BH và CK vuông góc với AD= AE. HB và KC lần lượt cắt AM tại O và O'. Chứng minh: O và O' trùng nhau
Cho tam giác ABC có D là trung điểm của AC. Trên đoạn BD lấy E sao cho BE = 2ED. Diểm F thuộc tia đối của DE sao BF = 2BE .Gọi K là trung điểm của CF và G là giao điểm của EK và AC. Chứng minh a,DE = DF b, CE = AF c, CG = 1/3 AC Help me=)
Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)
Cho tam giác ABC vuông tại A, gọi E là trung điểm của AC. Vẽ đường thẳng đi qua C vuông góc với CA và cắt đường thẳng BE ở K. Chứng minh
a, EB = EK
b, BC // AK
C BE <AB +BC