Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Dieu Thao Ly

1) Cho Δ ABC có AB = AC . Lấy điểm D trên cạnh AB , Điểm E trên cạnh AC sao cho AD = AE
a) Chứng minh : BE = CD
b) Gọi O là giao điểm của BE và CD . Chứng minh rằng Δ BOD = Δ COE

Hoàng Thị Ngọc Anh
16 tháng 1 2017 lúc 20:39

A B C O D E

a) Ta có: AD + DB = AB

AE + EC = AC

mà AB = AC; AD = AE => DB = EC

Vì AB = AC nên \(\Delta\)ABC cân tại A

=> \(\widehat{ABC}\) = \(\widehat{ACB}\) (góc đáy)

hay \(\widehat{DBC}\) = \(\widehat{ECB}\)

Xét \(\Delta\)DCB và \(\Delta\)EBC có:

DB = EC (c/m trên)

\(\widehat{DBC}\) = \(\widehat{ECB}\) (c/m trên)

BC chung

=> \(\Delta\)DCB = \(\Delta\)EBC (c.g.c)

=> DC = EB (2 cạnh tương ứng)

b) Do \(\Delta\)DCB = \(\Delta\)EBC (câu a)

=> \(\widehat{BDC}\) = \(\widehat{CEB}\) (2 góc t/ư)

hay \(\widehat{BDO}\) = \(\widehat{CEO}\)

Xét \(\Delta\)ABE và \(\Delta\)ACD có:

AE = AD (gt)

\(\widehat{A}\) chug

AB = AC (gt)

=> \(\Delta\)ABE = \(\Delta\)ACD (c.g.c)

=> \(\widehat{ABE}\) = \(\widehat{ACD}\) (2 góc t/ư)

hay \(\widehat{DBO}\) = \(\widehat{ECO}\)

Xét \(\Delta\)BOD và \(\Delta\)COE có:

\(\widehat{DBO}\) = \(\widehat{ECO}\) (c/m trên)

BD = CE (c/m trên)

\(\widehat{BDO}\) = \(\widehat{CEO}\) (c/m trên)

=> \(\Delta\)BOD = \(\Delta\)COE (g.c.g)

kudo shinichi
16 tháng 1 2017 lúc 21:02

D E A B C O 1 2 1 2 1 1

a, xét \(\Delta\) ABE và \(\Delta\) ACD có

\(\widehat{A}\) góc chung

AE = AD (gt)

AB = AC (gt)

=> \(\Delta\) ABE = \(\Delta\) ACD (cgc) => BE = CD

b, ta có \(\widehat{D1}\) + \(\widehat{D2}\) = 180o ( kề bù )

\(\widehat{E1}\) + \(\widehat{E2}\) = 180o ( kề bù )

\(\widehat{D1}\) = \(\widehat{E1}\) ( \(\Delta\) ABE = \(\Delta\) ACD )

=> \(\widehat{D2}\) = \(\widehat{E2}\)

ta có AD + DB = AB

AE + EC = AC

mà AB = AC, AD = AE => DB = EC

xét Δ BOD và Δ COE có

\(\widehat{D2}\) = \(\widehat{E2}\)

DB = EC \(\widehat{B1}\) = \(\widehat{C1}\) ( \(\Delta\) ABE = \(\Delta\) ACD ) => Δ BOD = Δ COE (gcg) haha


Các câu hỏi tương tự
Hà Thu Nguyễn
Xem chi tiết
Vũ Hà Khánh Linh
Xem chi tiết
Nguyễn Thị Thủy Tiên
Xem chi tiết
Kênh toán 7
Xem chi tiết
Nguyễn Ngọc Hồng Huơng
Xem chi tiết
Nguyễn Thị Hoa
Xem chi tiết
Nguyễn Thị Hoa
Xem chi tiết
Nguyễn Thị Hoa
Xem chi tiết
Châu Trần Giang
Xem chi tiết
Nyoko Satoh
Xem chi tiết