2, Với x,y,z\(\ge\)0 có \(x^3+y^3+z^3\ge xyz\left(x+y+z\right)\)
Dấu "=" xảy ra <=> x=y=z
Áp dụng bđt trên với a,b,c >0 có
\(\frac{1}{a^3}+\frac{a^3}{b^3}+b^3\ge\frac{1}{a}.\frac{a}{b}.b\left(\frac{1}{a}+\frac{a}{b}+b\right)\)=\(\frac{1}{a}+\frac{a}{b}+b\)
Dấu "=" xảy ra <=>a=b=1