Lời giải:
ĐK: $x\neq 5;x\neq 0; y\neq 2; y\neq -1$
\(M=\frac{x^2-25}{x^3-10x^2+25x}:\frac{y-2}{(y-2)(y+1)}=\frac{(x-5)(x+5)}{x(x^2-10x+25)}:\frac{1}{y+1}\)
\(=\frac{(x-5)(x+5)}{x(x-5)^2}:\frac{1}{y+1}=\frac{x+5}{x(x-5)}.(y+1)=\frac{(x+5)(y+1)}{x(x-5)}\)
--------------
$x^2+9y^2-4xy=2xy-|x-3|$
$\Leftrightarrow x^2+9y^2-6xy=-|x-3|$
$\Leftrightarrow (x-3y)^2+|x-3|=0$
Dễ thấy $(x-3y)^2\geq 0; |x-3|\geq 0$ với mọi $x,y\in $ĐKXĐ nên để tổng của chúng bằng $0$ thì:
$x-3y=x-3=0\Rightarrow x=3; y=1$
Khi đó: $M=\frac{(3+5)(1+1)}{3(3-5)}=\frac{-8}{3}$