A=1/2^2+1/3^2+...+1/100^2
=>A<1-1/2+1/2-1/3+...+1/99-1/100=99/100<1
A=1/2^2+1/3^2+...+1/100^2
=>A<1-1/2+1/2-1/3+...+1/99-1/100=99/100<1
chứng tỏ 1/3^2 + 1/4^2+1/5^2+...+1/100<1/2
1/100 #^2=10^2
nhanh và đúng me sẽ chọn!
C/M 1/2 mũ 2 + 1/3 mũ 2 +.....+ 1/100 mũ 2 <3/4
chứng tỏ rằng:
E=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)<\(\dfrac{3}{4}\)
CM 1/4^2 + 1/ 6^2 + 1/8^2 +..... + 1/100^2 < 1/4
CM 1/4^2 + 1/ 6^2 + 1/8^2 +..... + 1/100^2 < 1/4
chứng minh rằng
\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\) và B= 2
so sánh
A = \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\)và \(B=\dfrac{1}{10}\)
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{2016}-2}+\frac{1}{2^{2016}-1}>1008\)
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{2016}-2}+\frac{1}{2^{2016}-1}>1008\)
Chứng minh rằng:
a, M=1/2^2 + 1/3^2 + 1/4^2 +..+ 1/n^2 <1