\(f\left(1\right)-f\left(0\right)=\int_0^1\dfrac{1}{\sqrt{x+1}-\sqrt{x}}dx\)
\(=\int_0^1\left(\sqrt{x+1}+\sqrt{x}\right)dx\)
\(=\left(\dfrac{2}{3}.\left(x+1\right)^{\dfrac{3}{2}}+\dfrac{2}{3}.\left(x\right)^{\dfrac{3}{2}}\right)|_0^1\)
\(=\dfrac{2}{3}\left(2^{\dfrac{3}{2}}+1\right)-\dfrac{2}{3}\)
\(=\dfrac{2}{3}\left(\sqrt{8}+1\right)-\dfrac{2}{3}=\dfrac{4\sqrt{2}}{3}\)