Đây là nguyên hàm của phân thức hữu tỉ không thực sự. Ta cần tách phần nguyên của phân thức
\(\frac{x^4+x^2+1}{x\left(x-2\right)\left(x+2\right)}=x+\frac{5x^2+1}{x\left(x-2\right)\left(x+2\right)}\)
Triển khai phân thức hữu tỉ thực sự thành tổng các phân thức đơn giản
\(\frac{5x^2+1}{x\left(x-2\right)\left(x+2\right)}=\frac{A_1}{x}+\frac{A_2}{x-2}+\frac{A_3}{x+2}\)
Ta tính được \(A_1=-\frac{1}{4},A_2=\frac{21}{8},A_3=\frac{21}{8}\)
Do đó :
\(I=\frac{1}{2}x^2+\int\frac{-\frac{1}{4}}{x}dx+\int\frac{\frac{21}{8}}{x-2}dx+\int\frac{\frac{11}{8}}{x+2}dx\)
\(=\frac{1}{2}x^2-\frac{1}{4}\ln\left|x\right|+\frac{21}{8}\ln\left|x-2\right|+\frac{21}{8}\ln\left|x+2\right|+C\)