ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(x-\sqrt{x^2-x+1}+\sqrt{2x-1}-\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{x-1}{x+\sqrt{x^2-x+1}}+\dfrac{x-1}{\sqrt{2x-1}+\sqrt{x}}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{x+\sqrt{x^2-x+1}}+\dfrac{1}{\sqrt{2x-1}+\sqrt{x}}\right)=0\)
\(\Leftrightarrow x=1\) (do \(\dfrac{1}{x+\sqrt{x^2-x+1}}+\dfrac{1}{\sqrt{2x-1}+\sqrt{x}}>0;\forall x\ge\dfrac{1}{2}\))