c) \(\Rightarrow\left|x+1\right|=-3\)(vô lý do \(\left|x+1\right|\ge0\forall x\))
Vậy \(S=\varnothing\)
d) \(\Rightarrow\left|x-\dfrac{1}{3}\right|=\dfrac{8}{5}\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{8}{5}\\x-\dfrac{1}{3}=-\dfrac{8}{5}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{29}{15}\\x=-\dfrac{19}{15}\end{matrix}\right.\)
e) \(\Rightarrow\left|x+\dfrac{1}{3}\right|=\dfrac{1}{6}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{1}{6}\\x+\dfrac{1}{3}=-\dfrac{1}{6}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{6}\\x=-\dfrac{1}{2}\end{matrix}\right.\)