Bài 6:
a) Q= \(\left[\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right].\left(x+\sqrt{x}\right)\) (ĐK: x ≥ 0; x ≠ \(\pm1\))
Q= \(\left[\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\left(x+\sqrt{x}\right)\)
Q= \(\dfrac{x-\sqrt{x}+2\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\left(x+\sqrt{x}\right)\)
Q= \(\dfrac{2\sqrt{x}\left(x+\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\)
Q= \(\dfrac{2x\sqrt{x}+2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\)
Q= \(\dfrac{2x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\)
Q= \(\dfrac{2x}{x-1}\)
b) Q= \(\dfrac{2x}{x-1}\)
Q= \(\dfrac{x+x-1+1}{x-1}\)
Q= \(\dfrac{x-1}{x-1}+\dfrac{x+1}{x-1}\)
Q= \(1+\dfrac{x+1}{x-1}\)
Q= \(1+\dfrac{x-1+2}{x-1}\)
Q= \(2+\dfrac{2}{x-1}\)
để Q nguyên thì \(2⋮\left(x-1\right)\)
⇒ \(x-1\inƯ\left(2\right)\)
⇒ \(x-1\in\left\{-2;-1;1;2\right\}\)
vì \(x-1\ge-1\)
⇒ \(x-1\in\left\{-1;1;2\right\}\)
Cho x lần lượt bằng -1;1;2
⇒ \(x\in\left\{0;2;3\right\}\)
vậy để Q nguyên thì \(x\in\left\{0;2;3\right\}\)