1/ \(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\) (1)
Điều kiện: \(\left\{{}\begin{matrix}x-1\ne0\\3x+4\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-\dfrac{4}{3}\end{matrix}\right.\)
(1) \(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\\\Leftrightarrow12x^2+16x+21x+28=12x^2-12x+5x-5\\
\Leftrightarrow\left(16+21+12-5\right)x=-5-28\\
\Leftrightarrow44x=-33\\
\Leftrightarrow x=-\dfrac{3}{4}\) (Thỏa mãn)
Vậy \(x=-\dfrac{3}{4}\).
2/ \(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\) (2)
Điều kiện: \(x\ne\pm1\)
(2)\(\Leftrightarrow\dfrac{x}{x-1}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\
\Leftrightarrow\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\
\Leftrightarrow\dfrac{x\left(x+1\right)-2x}{\left(x+1\right)\left(x-1\right)}=0\\
\Leftrightarrow x\left(x+1\right)-2x=0\\
\Leftrightarrow x^2+x-2x=0\\
\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
So sánh với điều kiện \(\Rightarrow x=0\) là nghiệm của PT.
3/ \(\dfrac{1}{3-x}-\dfrac{14}{x^2-9}=1\) (3)
Điều kiện: \(x\ne\pm3\)
(3)\(\Leftrightarrow\dfrac{1}{3-x}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=1\\
\Leftrightarrow-\dfrac{\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\\
\Leftrightarrow-\left(x+3\right)-14=\left(x-3\right)\left(x+3\right)\\
\Leftrightarrow-x-17=x^2-9\Leftrightarrow x^2+x+8=0\) (Vô nghiệm do \(x^2+x+8>0\qquad\forall x\)).
Vậy PT vô nghiệm.
4/ \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\) (4)
Điều kiện: \(x\ne\pm1\)
(4)\(\Leftrightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\\
\Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\\
\Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4\\
\Leftrightarrow\left(x^2+2x+1\right)-\left(x^2-2x+1\right)=4\Leftrightarrow4x=4\Leftrightarrow x=1\) (loại)
Vậy PT vô nghiệm.
5/ \(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\) (5)
Điều kiện: \(x\ne0\)
(5)\(\Leftrightarrow x+\dfrac{1}{x}=\left(x+\dfrac{1}{x}\right)^2-2\)
Đặt \(t=x+\dfrac{1}{x}\), ta có: \(t=t^2-2\\
\Leftrightarrow t^2-t-2=0\Leftrightarrow\left(t-2\right)\left(t+1\right)=0\\
\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-1\end{matrix}\right.\)
Với \(t=2\) ta có: \(x+\dfrac{1}{x}=2\Leftrightarrow x^2+1=2x\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\) (thỏa mãn)
Với \(t=-1\) ta có: \(x+\dfrac{1}{x}=-1\Leftrightarrow x^2+1=-x\Leftrightarrow x^2+x+1=0\) (vô nghiệm).
Vậy \(x=1\) là nghiệm PT.
6/ \(\dfrac{x-1}{x^2+4}=\dfrac{x-1}{x+1}\) (6)
Điều kiện: \(x\ne-1\)
(6)\(\Leftrightarrow\dfrac{x-1}{x^2+4}-\dfrac{x-1}{x+1}=0\\
\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{x^2+4}-\dfrac{1}{x+1}\right)=0\\
\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{x^2+4}-\dfrac{1}{x+1}=0\end{matrix}\right.\)
\(x-1=0\Leftrightarrow x=1\) (Thỏa mãn)
\(\dfrac{1}{x^2+4}-\dfrac{1}{x+1}=0\Leftrightarrow\dfrac{1}{x^2+4}=\dfrac{1}{x+1}\Leftrightarrow x^2+4=x+1\\
\Leftrightarrow x^2-x+3=0\) (vô nghiệm).
Vậy \(x=1\) là nghiệm PT.