HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho ba số a,b,c là 3 số thực dương thỏa mãn (ab)3 + (bc)3 + (ca)3 = 3 (abc). Tính giá trị biểu thức
\(\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)\)
Cho 3 số thực a,b,c thỏa mãn \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\) = 0. CMR
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}\) = 0
Cho 3 số thực a,b,c ≠ 0 và a + b + c =0. CMR
\(\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{b^2+a^2-c^2}\) = 0
Cho 3 số a,b,c khác 0 và thỏa mãn \(a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{c}+\frac{1}{a}\right)+c\left(\frac{1}{a}+\frac{1}{b}\right)=-2\) và a3 + b3 + c3 = 1. CMR
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cho các số thực dương a,b,c. CMR
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\) ≥ \(\frac{a^2+b^2+c^2}{a+b+c}\)
Cho a,b,c là các số thực dương thỏa mãn a + b + c = 3. CMR
\(\frac{1}{4a^2+b^2+c^2}+\frac{1}{a^2+4b^2+c^2}+\frac{1}{a^2+b^2+4c^2}\) ≤ \(\frac{1}{2}\)