\(x^4+x^2+4=y^2-y\)
\(\Leftrightarrow4x^4+4x^2+16=4y^2-4y\)
\(\Leftrightarrow\left(2x^2\right)^2+2\cdot2x^2\cdot1+1+15+1=4y^2-4y+1\)
\(\Leftrightarrow\left(2x^2+1\right)^2+16=\left(2y-1\right)^2\)
\(\Leftrightarrow\left(2x^2+1\right)^2-\left(2y-1\right)^2=-16\)
\(\Leftrightarrow\left(2x^2+1+2y-1\right)\left(2x^2+1-2y+1\right)=-16\)
\(\Leftrightarrow\left(2x^2+2y\right)\left(2x^2-2y+2\right)=-16\)
\(\Leftrightarrow\left(x^2+y\right)\left(x^2-y+1\right)=-4\)
Vì x, y nguyên nên \(\left\{{}\begin{matrix}x^2+y\in Z\\x^2-y+1\in Z\end{matrix}\right.\)
+) TH 1:
\(\left\{{}\begin{matrix}x^2+y=1\\x^2-y+1=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-x^2\\x^2-\left(1-x^2\right)+1=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1-x^2\\2x^2=-4\end{matrix}\right.\)( loại )
+) TH 2:
\(\left\{{}\begin{matrix}x^2+y=-1\\x^2-y+1=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1-x^2\\x^2-\left(-1-x^2\right)+1=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1-x^2\\2x^2+2=-4\end{matrix}\right.\)( loại )
+) TH 3:
\(\left\{{}\begin{matrix}x^2+y=-2\\x^2-y+1=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2-x^2\\x^2-\left(-2-x^2\right)+1=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-2-x^2\\2x^2+3=2\end{matrix}\right.\)( loại )
+) TH 4:
\(\left\{{}\begin{matrix}x^2+y=2\\x^2-y+1=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2-x^2\\x^2-\left(2-x^2\right)+1=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2-x^2\\2x^2-1=-2\end{matrix}\right.\)( loại )
Vậy hệ vô nghiệm.