HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
b)
TH1: x chẵn mà x là số nguyên tố => x=2
=> y^2 = 117+4=121 => y=11 (thỏa mãn)
TH2: x lẻ => x^2 lẻ . Mà 117 lẻ
=> x^2+117 chẵn => y^2 chẵn => y chẵn mà y là số nguyên tố
=> y=2
=>x^2+117= 4=> x^2 = -113 (vô lý)
Vậy x=2;y=11
b) Áp dụng bất đẳng thức Cosi ta có:
\(a+1\ge2\sqrt{a};b+1\ge2\sqrt{b};c+1\ge2\sqrt{c}\\ \Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)
Dấu = xảy ra khi và chỉ khi a=b=c=1
a) Trước hết ta chứng minh \(a^2-1=\left(a-1\right)\left(a+1\right)\text{tự chứng minh }\)
Áp dụng bổ đề trên ta có:
\(-A=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\cdot...\cdot\left(1-\dfrac{1}{100^2}\right) =\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}\cdot...\cdot\dfrac{100^2-1}{100^2}=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot...\cdot\dfrac{99\cdot101}{100^2}=\dfrac{1\cdot2\cdot3^2\cdot...\cdot99^2\cdot100\cdot101}{2^2\cdot3^2\cdot...\cdot100^2}=\dfrac{1\cdot101}{2\cdot100}>\dfrac{1}{2}\\ \Rightarrow A< -\dfrac{1}{2}\)
\(B=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{0+\dfrac{3}{4}}=\dfrac{4}{3}\)Dấu = xảy ra khi và chỉ khi x=1/4
Giả sử x=a là nghiệm nguyên f(a)
\(\Leftrightarrow-4a^4+3a^3-2a^2+a-1=0\\ \Leftrightarrow-4a^4-2a^2+4a^3-a\left(a^2-1\right)=1\\ \Leftrightarrow1=-4a^4+4a^3-2a^2-\left(a+1\right)a\left(a-1\right)\left(1\right)\)
Vì a nguyên nên \(\left(a+1\right)a⋮2\Rightarrow\left(a+1\right)a\left(a-1\right)⋮2\)
Mà \(-4a^4+4a^3-2a^2⋮2\)
\(\Rightarrow-4a^4+4a^3-2a^2-\left(a-1\right)a\left(a+1\right)⋮2\) kết hợp (1)
\(\Rightarrow1⋮2\left(VL\right)\)
Vậy không tồn tại nghiệm nguyên của f(x)
Một bài bất đẳng thức khá đặc trưng với phương pháp đổi biến p,q,r. Mình sẽ phiên từ lời giải đổi biến sang biến đổi tương đương nhé. \(ab+bc+ca\le\dfrac{2}{7}+\dfrac{9abc}{7}\\ \Leftrightarrow7\left(ab+bc+ca\right)\left(a+b+c\right)\le2\left(a+b+c\right)^3+9abc\\ \Leftrightarrow7\left(a^2b+a^2c+b^2c+b^2a+c^2a+c^2b+3abc\right)\le2\left(a^3+b^3+c^3+3a^2b+3a^2c+3b^2c+3b^2a+3c^2a+3c^2b+6abc\right)+9abc\\ \Leftrightarrow2a^3+2b^3+2c^3\ge a^2b+a^2c+b^2c+b^2a+c^2a+c^2b\left(1\right)\)Thật vậy, áp dụng bất đẳng thức Cosi cho cặp 3 số dương ta có:
\(a^3+a^3+b^3\ge3a^2b;b^3+b^3+c^3\ge3b^2c;c^3+c^3+a^3\ge3c^2a\\ \Rightarrow a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)
Tương tự : \(a^3+b^3+c^3\ge a^2c+b^2a+c^2b\)
Suy ra (1) được chứng minh
Dấu bằng xảy ra khi và chỉ khi a=b=c=1/3 ---- Tick cho mình với -----
Thời gian từ nhà hùng so với từ nhà hải đến trường là :
1: 1,5=2/3
Vận tốc của Hùng so với hải là :
1,5 : 2/3 = 9/4
Coi số vận tốc của hải là 4 phần bằng nhau thì vận tốc của hùng là 9 phần như thế.
Hiệu số phần 2 bạn là :
9-4 =5 (phần)
Giá trị tương ứng mỗi phần là :
5:5=1 (lm/h)
Vận tốc của hùng là :
1x9=9 (km./h)
Vận tốc của hải là :
9-5=4 (km/h)
Tổng tuổi bà cháu là:
36 x 2 = 72 (tuổi)
Vì tuổi bà gấp 8 lần tuổi cháu , nên coi tuổi cháu là 1 phần thi tuổi bà là 8 phần như thế. Ta có sơ đồ:
Bà Cháu 72 tuổi
Từ sơ đồ ta có tổng số phần là:
1+8=9 (phần)
Số tuổi ứng với từng phần là :
72 : 9 = 8 (tuổi)
Tuổi cháu là :
8x1 = 8 (tuổi)
Tuổi bà là:
8x 8 = 64 (tuổi)
Đáp số : 8 tuổi và 64 tuổi
1/5 của 3m là :
3 : 5 = 3/5 (m)
Đáp số : 3/5 m