HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Tuyển Cộng tác viên Hoc24 nhiệm kì 28 tại đây: https://forms.gle/GrfwFgzveoKLVv3p6
\(\dfrac{15-x}{7}=\dfrac{x+7}{4}\\ \Leftrightarrow4\left(15-x\right)=7\left(x+7\right)\\ \Leftrightarrow11x=11\\ \Leftrightarrow x=1\)
Vậy x=1
sai r anh ạ
Áp dụng bất đẳng thức Cosi ta có :
\(x^4+1\ge2x^2;x^2+1\ge\left|x\right|\Rightarrow x^4+3\ge4\left|x\right|\)
Tương tự : \(y^4+3\ge4\left|y\right|\)
\(\Rightarrow x^4+y^4+6\ge4\left(\left|x\right|+\left|y\right|\right)\left(1\right)\)
Từ (1) suy ra \(x^4+y^4+6\ge4\left(x-y\right)\Rightarrow P\le\dfrac{1}{4}\)
Dấu = xảy ra \(x=1;y=-1\)
Từ (1) suy ra \(x^4+y^4+6\ge4\left(y-x\right)\Rightarrow P\ge-\dfrac{1}{4}\)
Dấu = xảy ra \(x=-1;y=1\)
Gọi 10 số đó là : \(a_1,a_2,...,a_{10}\in Q\)
Ta có : \(a_1a_2=a_2a_3=...=a_9a_{10}=a_{10}a_1=25\)
Suy ra \(a_1,a_2,...,a_{10}\ne0\)
Mà \(a_{1}a_{2} = a_{2} a_{3} \Rightarrow a_{1}=a_{3}\)
Tương tự : \(a_1=a_3=a_5=a_7=a_9;a_2=a_4=a_6=a_8=a_{10}\)
Vậy suy ra \(a_1=a_3=a_5=a_7=a_9=k\\ a_2=a_4=a_6=a_8=a_{10}=\dfrac{25}{k}\left(k\in Q\right)\)
\(A=\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\left(x\ge0;x\ne1\right)\)
\(B=\left(\dfrac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\dfrac{\sqrt{a}-2}{a-1}\right)\cdot\dfrac{\sqrt{a}+1}{\sqrt{a}}=\left[\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\right]\cdot\dfrac{\sqrt{a}+1}{\sqrt{a}}=\dfrac{\left(a+\sqrt{a}-2-a+\sqrt{a}+2\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)\sqrt{a}}=\dfrac{2}{a-1}\)
\(a\ge0;a\ne1\)
\(C=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ a \ge0;a\ne1\)
\(a.ĐKXĐ:\left\{{}\begin{matrix}\left|x\right|+4\ne0\\x-x^2\ge0\end{matrix}\right.\Leftrightarrow0\le x\le1\)
TXĐ : \(D=\left[0;1\right]\)
b. ĐKXĐ: \(\left|x-3\right|+\left|x+3\right|\ne0\)
Ta có : \(\left|x-3\right|+\left|x+3\right|\ge\left|x-3-x-3\right|=6>0\)
Nên hàm số xác định với mọi x
Tập xác định \(D=R\)
c. ĐKXĐ: \(\left\{{}\begin{matrix}\left|x\right|-1\ne0\\x^2-\left|x\right|\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm1\\\left|x\right|\left(\left|x\right|^3-1\right)\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\left|x\right|^3-1>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x>1\\x< -1\end{matrix}\right.\)
TXĐ : \(D=\left\{0\right\}U\left(-\infty;-1\right)U\left(1;+\infty\right)\)
Áp dụng bất đẳng thức Cosi ta có :
\(\frac{a}{b+c} + \frac{b+c}{4a} \geq 1;\frac{b}{c+a} + \frac{c+a}{4b} \geq 1;\frac{c}{a+b} + \frac{a+b}{4c} \geq 1\)
\(\frac{b}{a}+\frac{a}{b} \geq 2;\frac{c}{b}+\frac{b}{c} \geq 2;\frac{a}{c}+\frac{c}{a} \geq 2\)
\(\Rightarrow A=( \frac{a}{b+c} + \frac{b+c}{4a} +\frac{b}{c+a} + \frac{c+a}{4b} +\frac{c}{a+b} + \frac{a+b}{4c}) +\frac{3}{4}(\frac{b}{a}+\frac{a}{b}+\frac{c}{b}+\frac{b}{c} +\frac{a}{c}+\frac{c}{a} )\)
\(\geq 1+1+1+\frac{3}{4} (2+2+2)=\frac{15}{2}\)
Dấu = xảy ra khi và chỉ khi a=b=c>0
cả đoạn code toàn ctcon thế bạn
Áp dụng bất đẳng thức Cosi cho 2 số dương ta có:
\(\sqrt{1.2014} \leq \frac{1+2014}{2}=\frac{2015}{2} \\ \Rightarrow \frac{1}{\sqrt{1.2014}} \geq \frac{2}{2015}\)
Trong tổng A có 2014 phân thức, mỗi phân thức theo chứng minh tương tự, ta đều chỉ được nó lớn hơn hoặc bằng \( \frac{2}{2015}\)
Suy ra \(A\geq \frac{2.2014}{2015} = B\)
Dấu = xảy ra khi \(\Leftrightarrow\) \(1=2014\\ 2=2013\\ ...\\ 2014=1\) (vô lý)
Vậy A>B
Đổi : 3dm = 30 cm; 1,5 dm =15 cm
0,27 m2 = 2700 cm2
Diện tích một chiếc khăn quàng là :
30 x 15 : 2 = 225 (cm2)
Số khăn quàng may được nhiều nhất là :
2700 : 225 = 12 (cái)
Đáp số : 12 cái