HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a)
\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\\ P=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\\ P=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
b)
\(Q< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}}< 0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\\sqrt{x}-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x< 4\end{matrix}\right.\\ \Leftrightarrow0< x< 4\)
để \(\dfrac{x^2\left(x-3\right)}{x-9}< 0\) thì \(x^2\left(x-3\right)\:v\text{à}\:x-9\:ph\text{ải}\:kh\text{ác}\:nhau\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2\left(x-3\right)>0\\x-9< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2\left(x-3\right)< 0\\x-9>0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^3>3x^2\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x^3< 3x^2\\x>9\end{matrix}\right.\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>3\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 3\\x>9\end{matrix}\right.\end{matrix}\right.\Rightarrow3< x< 9\)
áp dụng CT này vô nha:
\(A=\text{ax}^2+bx+c=a\left(x+\dfrac{b}{2a}\right)^2+\dfrac{4ac-b^2}{4a}\left(a\ne0\right)\)
nếu a<0 thì \(A\le\dfrac{4ac-b^2}{4a}\) tại \(x=-\dfrac{b}{2a}\)
nếu a>0 thì \(A\ge\dfrac{4ac-b^2}{4a}\) tại \(x=-\dfrac{b}{2a}\)
công thức này được áp dụng dạng bài tìm GTLN và GTNN của tam thức bậc 2 nha
áp dụng câu đầu:
\(A=2x^2-8x-10\\ A=2\left(x+\dfrac{-8}{2.2}\right)^2+\dfrac{4.2.\left(-10\right)-\left(-8\right)^2}{4.2}\ge\dfrac{4.2.\left(-10\right)-\left(-8\right)^2}{4.2}=-18\)
đẳng thức xảy ra khi \(x=-\dfrac{-8}{2.2}=2\)
vậy MIN A=-18 tại x=2
không tin thì bạn thử lại bằng máy tính nha :))
\(x^2+2x+4=3\sqrt{x^3+4x}\\ \Leftrightarrow\left(x^2+2x+4\right)^2=\left(3\sqrt{x^3+4x}\right)^2\\ \Leftrightarrow x^4+4x^2+16+4x^3+16x+8x^2=9x^3+36x\\ \Leftrightarrow x^4-5x^3+12x^2-20x+16=0\\ \Leftrightarrow\left(x-2\right)^2\left(x^2-x+4\right)=0\\ \Rightarrow x-2=0\left(v\text{ì}\:x^2-x+4\ne0\:\forall x\in R\right)\\ \Leftrightarrow x=2\)
vậy phương trình có nghiệm duy nhất là 2
2)
=>a-15=0
a=0+15
a=15
b)=>x+7=2
x=2-7
x=-5
\(x^2+2y^2+2xy-2x-6y+2015\\ =\left(x^2+y^2+1^2+2.x.y-2.x-2.y\right)+\left(y^2-4y+4\right)+2010\\ =\left(x+y-1\right)^2+\left(y-2\right)^2+2010\)
\(\left\{{}\begin{matrix}\left(x+y-1\right)^2\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\Rightarrow\left(x+y-1\right)^2+\left(y-2\right)^2\ge0\\ \Leftrightarrow\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\)
đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
vậy GTNN của biểu thức là 2010 khi và chỉ khi x=-1 và y=2
\(2x^2-x-6=0\\ \Leftrightarrow2x^2+4x-3x-6=0\\ \Leftrightarrow\left(x-2\right)\left(2x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\2x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\\ \Leftrightarrow6-5x-4x^2=x^2+4x+4\\ \Leftrightarrow5x^2+9x-2=0\\ \Leftrightarrow5\left(x+\dfrac{9}{10}\right)^2=\dfrac{121}{20}\\ \Leftrightarrow\left(x+\dfrac{9}{10}\right)^2=\dfrac{\dfrac{121}{20}}{5}=\dfrac{121}{100}\\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{9}{10}=\dfrac{11}{10}\\x+\dfrac{9}{10}=-\dfrac{11}{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=2\end{matrix}\right.\)
vậy x cần tìm là 0,2 và 2
\(\left(a+2\right)^2-\left(a-2\right)^2=a^2+4a+4-a^2+4a-4\\ =8a=4.2.a⋮4\:\forall a\in R\)
lớp 1 mà bít cái này hả
mik lớp 6 còn chẳng bít nữa là...
tick mình tròn 145 điểm nha