
a) E thuộc tia phân giác của ˆCBHCBH^
⇒⇒ EG = EH (tính chất tia phân giác) (1)
E thuộc tia phân giác của ˆBCKBCK^
⇒⇒ EG = EK (tính chất tia phân giác) (2)
Từ (1) và (2) suy ra: EH = EG = EK
b) EH = EK
⇒⇒ E thuộc tia phân giác của ˆBACBAC^ mà E # A
Vậy AE là tia phân giác của ˆBACBAC^
c) AE là tia phân giác góc trong tại đỉnh A.
AF là tia phân giác góc ngoài tại đỉnh A.
⇒⇒ AE⊥AFAE⊥AF (tính chất hai góc kề bù)
Hay AE⊥DFAE⊥DF
d) Chứng minh tương tự câu a ta có BF là tia phân giác của ˆABCABC^
CD là tia phân giác của ˆACBACB^
Vậy các đường AE, BF, CD là các đường phân giác của ∆ABC
e) BF là phân giác góc trong tại đỉnh B.
BE là phân giác góc ngoài tại đỉnh B.
⇒BF⊥BE⇒BF⊥BE (tính chất hai góc kề bù)
Hay BF⊥EDBF⊥ED
CD là đường phân giác góc trong tại C
CE là đường phân giác góc ngoài tại C
⇒CD⊥CE⇒CD⊥CE (tính chất hai góc kề bù)
Hay CD⊥EF