HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a) Nối C đến D.
Ta có 2 đường tròn bằng nhau => AC = AD
=> ∆ ACD cân tại A
Lại có góc ABC = 90°; do có OB = OC = OA = R ( tính chất trung tuyến ứng với cạnh huyền )
Tương tự có góc ABD = 90°
=> ABC + ABD = 180°
=> C; B; D thẳng hàng và AB ⊥ CD
=> BC = BD
=> cung BC = cung BD
b) Nối E đến D; từ B hạ BH ⊥ ED Ta có góc DEA = 90° ( chứng minh tương tự theo (a) )
=> BH // EC
Mà theo (a) ta có BE = BD
=> BH là đường trung bình tam giác CDE
=> HE = HD mà BH ⊥ ED => B là điểm chính giữa cung EBD
a) Vẽ đường tròn (O; R). Vẽ góc ở tâm có số đo . Goc này chắn cung có số đo (hình a).
Tam giác AOB cân có = nên tam giác đều, suy ra Ab = R.
b) Theo câu a, ta có góc ở tâm bằng sđ = . Số đo góc ở tâm vẽ được theo cách này là : = 6. Suy ra được 6 cung tròn bằng nhau trên đường tròn.
Từ đó suy ra cách vẽ như sau:
Vẽ 6 dây cung bằng nhau và bằng bán kính R:
A1A2 = A2A3 = A3A4 = A4A5 = A5A6 = A6A1 = R
Từ đó suy ra 6 cung bằng nhau:
= = = cung A4A5= = = (hình b)
Ta có: ∆MAB~ ∆MCA ( = ; = )
nên =
Suy ra MA2 = MB. MC
Ta có:
= (theo gt).
= ( vì MN // BC)
Suy ra = , do đó =
Vậy ∆SMC là tam giác cân, suy ra SM = SC
Chứng minh tương tự ta cũng có ∆SAN cân , SN = SA.
BM ⊥ SA ( = vì là góc nội tiếp chắn nửa đường tròn).
Tương tự, có: AN ⊥ SB
Như vậy BM và AN là hai đường cao của tam giác SAB và H là trực tâm.
Suy ra SH ⊥ AB.
(Trong một tam giác ba đường cao đồng quy)
Nối B với 3 điểm A, C, D ta có:
=
(góc nội tiếp chắn nửa đường tròn)
( góc nội tiếp chắn nửa đường tròn)
Vậy + =
Suy ra ba điểm A, C, D thẳng hàng.
Do hai đường tròn bằng nhau nên hai cung nhỏ AB bằng nhau. Vì cùng căng dây AB.
Suy ra = (cùng chắn hai cung bằng nhau) nên tam giác BMN là tam giác cân đỉnh B
Gọi số đó là ab (0\(\le\)a;b \(\le\) 9)
Theo đầu bài ta có:
ab - ba = 36
10*a +b -10*b - a = 36
9*a - 9*b = 36
9 *(a-b) =36
Mà theo đầu bài a=3*b nên 9*(3*b-b)=36
=>9*2*b=36
=>18*b=36
=>b=2
Do đó a=2*3=6
Vậy số cần tìm là 62
Đáp số 62
Gọi MN = 2R là đường kính của đường tròn có cung tròn là
Theo bài tập 23, ta có:
KA. KB = KM. KN
hay KA. KB = KM. (2R - KM)
Thay số, ta có:
20. 20 = 3(2R - 3)
do đó 6R = 400 + 9 = 4099.
Vậy R = ≈688,2(mét)
là góc tạo bởi tiếp tuyến BT và dây cung BP.
= sđ (1)
là góc nội tiếp chắn cung
= sđ (2)
Lại có = (∆OAP cân) (3)
Từ (1), (2), (3), suy ra =