là góc tạo bởi tiếp tuyến BT và dây cung BP.
= sđ (1)
là góc nội tiếp chắn cung
= sđ (2)
Lại có = (∆OAP cân) (3)
Từ (1), (2), (3), suy ra =
là góc tạo bởi tiếp tuyến BT và dây cung BP.
= sđ (1)
là góc nội tiếp chắn cung
= sđ (2)
Lại có = (∆OAP cân) (3)
Từ (1), (2), (3), suy ra =
Cho đường tròn tâm (O) , đường kính AB . Lấy điểm P khác A và B trên đường tròn . Gọi T là giao điểm của AP với tiếp tuyến tại B của đường tròn . Chứng minh góc APO = góc PBT
Cho đường tròn tâm O đường kính AB. Một tiếp tuyến của đường tròn tạo P cắt đường thẳng AB tại T (điểm B nằm giữa O và T).
Chứng minh \(\widehat{BTP}+2.\widehat{TPB}=90^o.\)
4.Cho đường tròn (O) đường kính BC. Lấy điểm A bất kì nằm trên đường tròn
( AB> AC ) . Gọi M là giao điểm của tiếp tuyến tại A với đường thẳng BC. Chứng
minh rằng: gócBAO = góc CAM
5. Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Tiếp tuyến kẻ từ A của ( O')
cắt (O) tại C và tiếp tuyến tại A của (O) cắt (O') tại D. Chứng minh rằng:
góc CBA = góc DBA
Từ điểm A ở ngoài đường tròn (O) vẽ 2 tiếp tuyến AB, AC và cát tuyến AMN của đường tròn đó. Gọi I là trung điểm của dây MN.
a) Chứng minh: Năm điểm A, B, I, O, C cùng nằm trên một đường tròn, xác định tâm và bán kính của đường tròn này.
b) Vẽ đường kính BD. Chứng minh CD song song với OA.
Cho đường tròn tâm O bán kính R. Lấy ba điểm bất kì A, B, C trên đường tròn (O). Điểm E bất kì thuộc đoạn thẳng AB (và không trùng với A, B). Đường thẳng d đi qua điểm E và vuông góc với đường thẳng OA cắt đoạn thẳng AC tại điểm F.
Chứng minh \(\widehat{BCF}=\widehat{BEF}=180^0\)
Cho đường tròn O, đường kính AB. Lấy C thuộc (O) (C khác A và B). Tiếp tuyến tại A của đường tròn O cắt BC tại M.
a, CM: tam giác ABC vuông và BA2=BC.BM b, Gọi K là trung điểm của MA. CM:KC là tiếp tuyến của đường tròn O
. Cho đường tròn (O; R) và (O’; R’) cắt nhau tại A và B. Trên tia đối của tia AB lấy điểm P, kẻ tiếp tuyến PT với đường tròn (O) và tiếp tuyến PE với đường tròn (O’) với T và E là hai tiếp điểm. Chứng mình rằng PTE PET