A=\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+\sqrt{13}\)
= \(\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]\)
= \(\left(x^2+3x\right)\left(x^2+3x+2\right)+\sqrt{13}\)
Đặt t=\(x^2+3x+1\)
A= \(\left(t-1\right)\left(t+1\right)+\sqrt{13}\)
= \(t^2-1+\sqrt{13}\) \(\geq\) \(\sqrt{13}-1\)
Dấu = xảy ra khi \(t^2\)=0 \(\Leftrightarrow\) t=0 \(\Leftrightarrow\) \(x^2+3x+1=0\) \(\Leftrightarrow\) \(\left[\begin{array}{}
x=\dfrac{-3+\sqrt{5}}2\\
x=\dfrac{-3-\sqrt{5}}2
\end{array} \right.\)(cái này bấm máy là ra)
Vậy MinA=\(\sqrt{13}-1\) khi \(\left[\begin{array}{}
x=\dfrac{-3+\sqrt{5}}2\\
x=\dfrac{-3-\sqrt{5}}2
\end{array} \right.\)
b) B= \(\left(x^2-4x-5\right)\left(x^2-12x+27\right)-\sqrt{3}\)
= \(\left(x^2+x-5x-5\right)\left(x^2-3x-9x+27\right)-\sqrt{3}\)
= \(\left[x\left(x+1\right)-5\left(x+1\right)\right].\left[x\left(x-3\right)-9\left(x-3\right)\right]-\sqrt{3}\)
= \(\left(x+1\right)\left(x-5\right)\left(x-3\right)\left(x-9\right)-\sqrt{3}\)
= \(\left[\left(x+1\right)\left(x-9\right)\right]\left[\left(x-3\right)\left(x-5\right)\right]-\sqrt{3}\)
= \(\left(x^2-8x-9\right)\left(x^2-8x+15\right)-\sqrt{3}\)
Đặt t=\(x^2-8x+3\)
\(\Rightarrow\) B= \(\left(t-12\right)\left(t+12\right)-\sqrt{3}\)
= \(t^2-144+\sqrt{3}\) \(\geq\) \(-144+\sqrt{3}\)
Dấu = xảy ra khi \(t^2=0\) \(\Leftrightarrow\) t=0 \(\Leftrightarrow\) \(x^2-8x+3\) =0 \(\Leftrightarrow\) \(\left[\begin{array}{}
x=4+\sqrt{13}\\
x=4-\sqrt{13}
\end{array} \right.\)(bạn chịu khó bấm máy,cái này dùng delta là ra)
Vậy MinB=\(-144+\sqrt{3}\) khi \(\left[\begin{array}{}
x=4+\sqrt{13}\\
x=4-\sqrt{13}
\end{array} \right.\)