HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
10.\(\dfrac{1}{x}-\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\dfrac{yz-xz+xy}{xyz}=0\Rightarrow xy-xz+xy=0\)
Ta có :\(x-y+z=-1\Rightarrow\left(x-y+z\right)^2=1\Rightarrow x^2+y^2+z^2-2\left(xy+yz-xz\right)=1\)mà \(xy-xz+xy=0\)
Nên :\(x^2+y^2+z^2-2.0=1\Rightarrow x^2+y^2+z^2=1\)
Vậy \(x^2+y^2+z^2=1\)
9. Theo đề ta có :\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\dfrac{yz+xz+xy}{xyz}=0\Rightarrow yz+xz+xy=0\)
Mặt khác :\(x+y+z=1\Rightarrow\left(x+y+z\right)^2=1\Rightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\)mà \(yz+xz+xy=0\)
Nên \(x^2+y^2+z^2+2.0=1\Rightarrow x^2+y^2+z^2=1\)
Ta có :\(a+b+\dfrac{1}{2}=a+b+\dfrac{1}{4}+\dfrac{1}{4}=\left(a+\dfrac{1}{4}\right)+\left(b+\dfrac{1}{4}\right)\)
Áp dụng bất đẳng thức cô si ta có :
\(a+\dfrac{1}{4}\ge2\sqrt{a.\dfrac{1}{4}}=\sqrt{a}\)
\(b+\dfrac{1}{4}\ge2\sqrt{b.\dfrac{1}{4}}=\sqrt{b}\)
Do đó :\(a+b+\dfrac{1}{2}\ge\sqrt{a}+\sqrt{b}\)
Dấu "=" xảy ra khi :\(a=b=\dfrac{1}{4}\)
Vậy với \(a,b\ge0\) thì \(a+b+\dfrac{1}{2}\ge\sqrt{a}+\sqrt{b}\)
Ta có :VT-VP=
\(\left(\dfrac{x}{\sqrt{x}+\sqrt{y}}-\dfrac{y}{\sqrt{x}+\sqrt{y}}\right)+\left(\dfrac{y}{\sqrt{y}+\sqrt{z}}-\dfrac{z}{\sqrt{y}+\sqrt{z}}\right)+\left(\dfrac{z}{\sqrt{z}+\sqrt{x}}-\dfrac{x}{\sqrt{z}+\sqrt{x}}\right)\)\(=\dfrac{x-y}{\sqrt{x}+\sqrt{y}}+\dfrac{y-z}{\sqrt{y}-\sqrt{z}}+\dfrac{z-x}{\sqrt{x}+\sqrt{z}}\)
\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}+\dfrac{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}+\sqrt{z}\right)}{\sqrt{y}+\sqrt{z}}+\dfrac{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}+\sqrt{x}\right)}{\sqrt{x}+\sqrt{x}}\)\(=\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{y}-\sqrt{z}\right)+\left(\sqrt{z}-\sqrt{x}\right)=0\)
\(\Rightarrow VT=VP\)
Vậy ...
-Ta có : \(A=\dfrac{x^2+4x+4}{x}=\dfrac{x^2}{x}+\dfrac{4x}{x}+\dfrac{4}{x}=\left(x+\dfrac{4}{x}\right)+4\)
Áp dụng bất đẳng thức cô si ta có :\(x+\dfrac{4}{x}\ge2\sqrt{x.\dfrac{4}{x}}=4\)
Do đó :A\(\ge4+4=8\)
Dấu "=" xảy ra khi :\(x=\dfrac{4}{x}\Leftrightarrow x^2=4\Leftrightarrow x=2\) (\(x>0\))
Vậy giá trị nhỏ nhất của A là 8 khi \(x=2\)
- Ta có :B=\(\dfrac{x^2}{x-1}=\dfrac{x^2-1+1}{x-1}=\dfrac{\left(x-1\right)\left(x+1\right)}{x-1}+\dfrac{1}{x-1}=x+1+\dfrac{1}{x-1}=\left(x-1\right)+\dfrac{1}{x-1}+2\)Áp dụng bất đẳng thức cô si ta có :
\(\left(x-1\right)+\dfrac{1}{x-1}\ge2\sqrt{\left(x-1\right).\dfrac{1}{\left(x-1\right)}}=2\)
Do đó :B\(\ge2+2=4\)
Dấu "=" xảy ra khi :\(x-1=\dfrac{1}{x-1}\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)
Vậy giá trị nhỏ nhất của B là 4 khi \(x=2\)
\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3+\left(\sqrt{z}\right)^3\ge3\sqrt[3]{\left(\sqrt{xyz}\right)^3}=3\sqrt{xyz}\)Dấu "=" xảy ra khi :\(\sqrt{x}=\sqrt{y}=\sqrt{z}\)
Do đó :\(A=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Vậy A=8
Ta có :\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{2}-\dfrac{1}{y}+\dfrac{1}{2}-\dfrac{1}{z}\Leftrightarrow\dfrac{1}{x}=\dfrac{y-2}{2y}+\dfrac{z-2}{2z}\)
Áp dụng bất đẳng thức cô si ta có :\(\dfrac{y-2}{2y}+\dfrac{z-2}{2z}\ge2\sqrt{\dfrac{\left(y-2\right)\left(z-2\right)}{4yz}}=\dfrac{\sqrt{\left(y-2\right)\left(z-2\right)}}{\sqrt{yz}}\)
\(\Rightarrow\)\(\dfrac{1}{x}\ge\dfrac{\sqrt{\left(y-2\right)\left(z-2\right)}}{\sqrt{yz}}\) (1)
Chứng minh tương tự :\(\dfrac{1}{y}\ge\dfrac{\sqrt{\left(x-2\right)\left(z-2\right)}}{\sqrt{xz}}\) (2)
\(\dfrac{1}{z}\ge\dfrac{\sqrt{\left(x-2\right)\left(y-2\right)}}{\sqrt{xy}}\) (3)
Nhân 3 bất đẳng thức (1),(2) và (3) vế theo vế ta được :
\(\dfrac{1}{xyz}\ge\dfrac{\left(x-2\right)\left(y-2\right)\left(z-2\right)}{xyz}\)
\(\Rightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)
Dấu "=" xảy ra khi :\(x=y=z=3\)
Ta có :
227 = 23.9 = 89
318 = 32.9 = 99
Vì 89 < 99 nên 227 < 318