a, \(\dfrac{2x-1}{x+3}=\dfrac{2x+1}{x-3}\) Điều kiện xác định: \(x\ne-3,x\ne3\)
\(\Rightarrow\left(x-3\right)\left(2x-1\right)=\left(x+3\right)\left(2x+1\right)\)
\(\Leftrightarrow2x^2-x-6x+3=2x^2+x+6x+3\)
\(\Leftrightarrow2x^2-x-6x-2x^2-x-6x=3-3\)
\(\Leftrightarrow-14x=0\)
\(\Leftrightarrow x=0\left(TĐK\right)\)
\(\Rightarrow S=\left\{0\right\}\)
b,\(\dfrac{x^2+3}{x-2}=x+5\) Điều kiện xác định:\(x\ne2\)
\(\Rightarrow x^2+3=\left(x+5\right)\left(x-2\right)\)
\(\Leftrightarrow x^2+3=x^2-2x+5x-10\)
\(\Leftrightarrow x^2-x^2+2x-5x=-10-3\)
\(\Leftrightarrow-3x=-13\)
\(\Leftrightarrow x=\dfrac{-13}{-3}=\dfrac{13}{3}\left(TĐK\right)\)
\(\Rightarrow S=\left\{\dfrac{13}{3}\right\}\)
c, \(2x\left(x-6\right)+3\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{-3}{2}\end{matrix}\right.\)
\(\Rightarrow S=\left\{6;\dfrac{-3}{2}\right\}\)
d, \(\left(x-1\right)\left(2x-4\right)\left(3x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-4=0\\3x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)
\(\Rightarrow S=\left\{1;2;3\right\}\)