Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 5
Số lượng câu trả lời 223
Điểm GP 83
Điểm SP 357

Người theo dõi (78)

Đang theo dõi (5)

Neet
Akai Haruma
Hà Đức Thọ

Câu trả lời:

Ta có :

\(\left(a-1\right)^2\ge0\)

\(\Rightarrow a^2+1\ge2a\)

\(\Rightarrow2a-1\le a^2\)

\(\Rightarrow\dfrac{a}{2a-1}\ge\dfrac{a}{a^2}\)

\(\Rightarrow\dfrac{a}{2a-1}\ge\dfrac{1}{a}\)

Tương tự ta có :

\(\dfrac{b}{2b-1}\ge\dfrac{1}{b}\)

Do đó : \(\dfrac{a}{2a-1}+\dfrac{b}{2b-1}\ge\dfrac{1}{a}+\dfrac{1}{b}\)

*) Chứng minh bổ đề : \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\left(x,y>0\right)\)

Ta có :

\(\left(x-y\right)^2\ge0\)

\(\Rightarrow x^2+y^2\ge2xy\)

\(\Rightarrow x^2+y^2+2xy\ge4xy\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}\ge\dfrac{4xy}{xy\left(x+y\right)}\left(x,y>0\right)\)

\(\Rightarrow\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\)

\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

*) Áp dụng bổ đè trên ta có:

\(\dfrac{a}{2a-1}+\dfrac{b}{2b-1}\ge\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) (1)

Ta có :

\(a+b-\left(1+ab\right)\)

\(=\left(a-ab\right)+\left(b-1\right)\)

\(=a\left(1-b\right)+\left(b-1\right)\)

\(=\left(1-b\right)\left(a-1\right)\)

Vì \(a,b\ge1\Rightarrow\left\{{}\begin{matrix}a-1\ge0\\1-b\le0\end{matrix}\right.\)

\(\Rightarrow\left(1-b\right)\left(a-1\right)\le0\)

\(\Rightarrow a+b-\left(1+ab\right)\le0\)

\(\Rightarrow a+b\le1+ab\)

\(\Rightarrow\dfrac{4}{a+b}\ge\dfrac{4}{1+ab}\) (2)

Từ (1) và (2) ta được:

\(\dfrac{a}{2a-1}+\dfrac{b}{2b-1}\ge\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\ge\dfrac{4}{1+ab}\)

\(\Rightarrow\dfrac{a}{2a-1}+\dfrac{b}{2b-1}\ge\dfrac{4}{1+ab}\)

\(\rightarrowđpcm\)