1)
a) \(E=x^2-2x+y^2+4y+8\)
\(\Leftrightarrow E=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+3\)
\(\Leftrightarrow E=\left(x-1\right)^2+\left(y+2\right)^2+3\)
Vậy GTNN của E=3 khi \(\left\{{}\begin{matrix}x-1=0\Leftrightarrow x=1\\y+2=0\Leftrightarrow y=-2\end{matrix}\right.\)
b) \(F=x^2-4x+y^2-8y+6\)
\(\Leftrightarrow F=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)
\(\Leftrightarrow F=\left(x-2\right)^2+\left(y-4\right)^2-14\)
Vậy GTNN của \(F=-14\) khi \(\left\{{}\begin{matrix}x-2=0\Leftrightarrow x=2\\y-4=0\Leftrightarrow y=4\end{matrix}\right.\)
2)
a)\(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)
\(=\left(x-y\right)\left[3\left(x+y\right)-2\left(x-y\right)\right]\)
\(=\left(x-y\right)\left[3x+3y-2x+2y\right]\)
\(=\left(x-y\right)\left(x+5y\right)\)
b) \(x^3-4x^2-9x+36\)
\(=\left(x^3-4x^2\right)-\left(9x-36\right)\)
\(=x^2\left(x-4\right)-9\left(x-4\right)\)
\(=\left(x-4\right)\left(x^2-9\right)\)
\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
c) \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left[\left(x^2-2xy+y^2\right)-4z^2\right]\)
\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
d) \(5x^2-10xy+5y^2-20x^2\)
\(=5\left(x^2-2xy+y^2-4x^2\right)\)
\(=5\left[\left(x^2-2xy+y^2\right)-4x^2\right]\)
\(=5\left[\left(x-y\right)^2-\left(2x\right)^2\right]\)
\(=5\left(x-y-2x\right)\left(x-y+2x\right)\)
\(=5\left(-x-y\right)\left(3x-y\right)\)