1) \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
2)
a) \(3\left(x-1\right)^2-3x\left(x-5\right)-2=0\)
\(\Leftrightarrow3\left(x^2-2x+1\right)-3x\left(x-5\right)-2=0\)
\(\Leftrightarrow3x^2-6x+3-3x^2+15x-2=0\)
\(\Leftrightarrow9x+1=0\)
\(\Leftrightarrow9x=-1\)
\(\Leftrightarrow x=\dfrac{-1}{9}\)
Vậy \(x=\dfrac{-1}{9}\)
b) \(2x^2-5x-7=0\)
\(\Leftrightarrow2x^2+2x-7x-7=0\)
\(\Leftrightarrow\left(2x^2+2x\right)-\left(7x+7\right)=0\)
\(\Leftrightarrow2x\left(x+1\right)-7\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy \(x=-1\); \(x=\dfrac{7}{2}\)