a) Đk:\(x\in R\)
TH1:Xét \(x\in\left(3;+\infty\right)\)
Lấy \(x_1;x_2\in\left(3;+\infty\right)\) thỏa mãn \(x_1\ne x_2\)
Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{2x_1^2-4x_1+3-\left(2x_2^2-4x_2+3\right)}{x_1-x_2}\)\(=2\left(x_1+x_2\right)-4\)
Do \(x_1;x_2\in\left(3;+\infty\right)\)\(\Rightarrow2\left(x_1+x_2\right)>12\Leftrightarrow2\left(x_1+x_2\right)-4>8>0\)
\(\Rightarrow I>0\)
Hàm đồng biến trên \(\left(3;+\infty\right)\)
TH2:Xét \(x\in\left(-10;1\right)\)
Lấy \(x_1;x_2\in\left(-10;1\right):x_1\ne x_2\)
Xét \(I=2\left(x_1+x_2\right)-4\)
Do \(x_1< 1;x_2< 1\Rightarrow2\left(x_1+x_2\right)< 4\Rightarrow I=2\left(x_1+x_2\right)-4< 0\)
Hàm nb trên khoảng \(\left(-10;1\right)\)
b)Làm tương tự,hàm nb trên \(\left(1;+\infty\right)\) và đb trên \(\left(-10;-2\right)\)
c)Đk: \(x\in R\backslash\left\{2\right\}\)
=>Hàm số xác định trên \(\left(-\infty;2\right)\)
Lấy \(x_1;x_2\in\left(-\infty;2\right):x_1\ne x_2\)
Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\dfrac{x_1}{x_1-2}-\dfrac{x_2}{x_2-2}}{x_1-x_2}=\dfrac{-2}{\left(x_1-2\right)\left(x_2-2\right)}\)
Do \(x_1;x_2< 2\Rightarrow\left(x_1-2\right)\left(x_2-2\right)>0\)
\(\Rightarrow I=-\dfrac{2}{\left(x_1-2\right)\left(x_2-2\right)}< 0\)
Hàm nb trên \(\left(-\infty;2\right)\)
d)\(I=\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}\)
Hàm đb trên \(\left(-1;+\infty\right)\) ; \(\left(-3;-2\right)\)
e)TXĐ:D=R
Lấy \(x_1;x_2\in\left(0;+\infty\right):x_1< x_2\)
\(T=f\left(x_1\right)-f\left(x_2\right)=x_1^{2020}+x_1^2-3-x_2^{2020}-x_2^2+3=x_1^{2020}-x_2^{2020}+x_1^2-x_2^2\)
Do \(x_1< x_2\Rightarrow x_1^{2020}< x_2^{2020};x_1^2< x_2^2\)
\(\Rightarrow T=x_1^{2020}-x_2^{2020}+x_1^2-x_2^2< 0\)
Hàm đb trên \(\left(0;+\infty\right)\)