a) Vì ABCD là hình thang nên ta có:
AB // CD (gt) (1)
\(\Rightarrow\widehat{D_1}=\widehat{B_1}\) (2 góc so le trong) (2)
Và \(\widehat{C_1}=\widehat{A_1}\) (2 góc so le trong) (3)
Xét \(\Delta IMD\) và \(\Delta IAB\) ta có:
\(\widehat{I_1}=\widehat{I_2}\) (2 góc đối đỉnh) (4)
Từ (2), (4) \(\Rightarrow\Delta IMD\sim\Delta IAB\) (G-G) (5)
Xét \(\Delta KMC\) và \(\Delta KBA\) ta có:
\(\widehat{K_1}=\widehat{K_2}\) (2 góc đối đỉnh) (6)
Từ (3), (6) \(\Rightarrow\Delta KMC\sim\Delta KBA\) (G-G) (7)
Từ (5) \(\Rightarrow\dfrac{IM}{IA}=\dfrac{DM}{AB}\) (8)
Từ (7) \(\Rightarrow\dfrac{KM}{KB}=\dfrac{MC}{AB}\) (9)
Mà DM = MC (M là trung điểm của CD) (10)
\(\Rightarrow\dfrac{DM}{AB}=\dfrac{MC}{AB}\) (11)
Từ (8), (9), (11) \(\Rightarrow\dfrac{IM}{IA}=\dfrac{KM}{KB}\) (12)
Nên IK // AB (định lý Ta-lét đảo) (13)