Học tại trường Chưa có thông tin
Đến từ Đồng Tháp , Chưa có thông tin
Số lượng câu hỏi 4
Số lượng câu trả lời 80
Điểm GP 34
Điểm SP 125

Người theo dõi (19)

nghĩa lê
Viiz Bii
Hải Đăng
kim taehyung

Đang theo dõi (2)


Câu trả lời:

Đường tròn

a) Ta có: đường kính AB vuông góc với dây CD tại M (gt) (1)

\(\Rightarrow MC=MD\left(2\right)\)

Mà MA = ME (E đối xứng với A qua M) (3)

Từ (2), (3) \(\Rightarrow\) Tứ giác ACED là hình bình hành (4)

Từ (1), (2) \(\Rightarrow AB\) là đường trung trực của CD

\(\Rightarrow\) Điểm E nằm trên đường trung trực AB cách đều 2 đầu mút C và D \(\Rightarrow EC=ED\) (5)

Từ (4), (5) \(\Rightarrow\) Tứ giác ACED là hình thoi

b) Ta có: AB = 2R = 2 . 6,5 = 13 (cm)

\(\Rightarrow MB=AB-MA=13-4=9\left(cm\right)\)

Theo hệ thức lượng ta có:

MC2 = MA . MB = 4 . 9 = 36

\(\Leftrightarrow MC=\sqrt{36}=6\left(cm\right)\)

Từ (2) \(\Rightarrow MC=MD=\dfrac{CD}{2}\)

\(\Leftrightarrow CD=2MC=2.6=12\left(cm\right)\)

c) Áp dụng hệ thức lượng đối với :

- \(\Delta AMC\) ta có:

MH . AC = MA . MC

\(\Leftrightarrow MH=\dfrac{MA.MC}{AC}\)

- \(\Delta BMC\) ta có:

MK . BC = MB . MC

\(\Leftrightarrow MK=\dfrac{MB.MC}{BC}\)

\(\Rightarrow MH.MK=\dfrac{MA.MC.MB.MC}{AC.BC}\)

= \(\dfrac{\left(MA.MB\right)\left(MC.MC\right)}{AC.BC}\left(6\right)\)

\(\Delta ACB\) có cạnh AB là đường kính của đường tròn tâm O nên \(\Delta ACB\) vuông tại C

Áp dụng hệ thức lượng đối với \(\Delta ACB\) ta có:

MC2 = MA . MB (7)

Và AC. BC = MC . AB (8)

Từ (6), (7), (8) \(\Rightarrow\dfrac{\left(MA.MB\right)\left(MC.MC\right)}{AC.BC}=\dfrac{MC^2.MC^2}{MC.AB}=\dfrac{MC^4}{MC.AB}=\dfrac{MC^3}{AB}=\dfrac{MC^3}{2R}\)

Vậy MH . MK = \(\dfrac{MC^3}{2R}\)