HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Bạn ơi không được tự hỏi và tự trả lời nhé ?
bao nhieu vay ban minh to mo lam?
đáy lớn 0,9
đáy bé 0,4
Kết quả =1320
cho luon ca cong thuc tinh day so ne , qua nam moi nhe
so so hang = ( so dau - so cuoi ) : khoang cach + 1
tong = ( so dau + so cuoi ) x khoang cach : 2
cách khác câu b
ta thấy x = 1 không phải nghiệm của pt
=> x khác 1
Khi đó nhân cả 2 vế của pt đã cho với x - 1 ta được
x5 - 1 = 0 <=> x5 = 1 <=> x = 1, mâu thuẫn
Vậy ...
Giả sử pt có nghiệm nguyên
Ta có: VT = x5 - 5x3 + 4x
= x5 - x - 5x3 + 5x
= x(x4 - 1) - 5x3 + 5x
= x(x2 - 1)(x2 + 1) - 5x3 + 5x
= x(x2 - 1)(x2 - 4) + x(x2 - 1).5 - 5x3 + 5x
= (x - 2)(x - 1)x(x+ 1)(x + 2) + 5x(x2 - 1) - 5x3 + 5x
Vì x nguyên nên (x - 2)(x - 1)x(x + 1)(x + 2) là tích 5 số nguyên liên tiếp
=> (x - 2)(x - 1)x(x + 1)(x + 2) chia hết cho 5
Lại có: 5x(x2 - 1); -5x3; 5x chia hết cho 5
Do đó (x - 2)(x - 1)x(x + 1)(x + 2) + 5x(x2 - 1) - 5x3 + 5x chia hết cho 5
hay VT chia hết cho 5
VP = 24(5y + 1) không chia hết cho 5
suy ra điều vô lý
=> điều giả sử là sai
Ta có đpcm
Nhận thấy: các số hạng trong tổng trên cách đều nhau 1,1 đơn vị.
Tổng trên có các số hạng là:
(99,100-1,2):1,1+1=90 (số)
Tổng trên bằng: (99,100+1,2)x90:2=4513,5
A B C D E F H
\(\Delta ABH\) và \(\Delta ABD\) có chung đường cao kẻ từ B -> AD nên \(\dfrac{AH}{AD}=\dfrac{S_{ABH}}{S_{ABD}}\) (1)
\(\Delta AHC\) và \(\Delta ADC\) có chung đường cao kẻ từ C -> AD nên \(\dfrac{AH}{AD}=\dfrac{S_{AHC}}{S_{ADC}}\) (2)
Từ (1) và (2) suy ra \(\dfrac{AH}{AD}=\dfrac{S_{ABH}}{S_{ABD}}=\dfrac{S_{AHC}}{S_{ADC}}=\dfrac{S_{ABH}+S_{AHC}}{S_{ABD}+S_{ADC}}=\dfrac{S_{ABH}+S_{ACH}}{S_{ABC}}\)(áp dụng tính chất của dãy tỉ số = nhau)
CMTT: \(\dfrac{BH}{BE}=\dfrac{S_{ABH}+S_{BCH}}{S_{ABC}}\)
\(\dfrac{CH}{CF}=\dfrac{S_{ACH}+S_{BCH}}{S_{ABC}}\)
Cộng vế với vế của các đẳng thức trên ta được :
\(\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}=\dfrac{2\left(S_{ABH}+S_{ACH}+S_{BCH}\right)}{S_{ABC}}=\dfrac{2S_{ABC}}{S_{ABC}}=2\)
(đpcm)
\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
<=> \(a+b+c=\dfrac{ab+bc+ca}{abc}=\dfrac{ab+bc+ca}{1}=ab+bc+ca\) (thay abc = 1)
=> a + b + c - ab - bc - ca = 0
<=> 1 + a + b + c - ab - bc - ca - 1 = 0
<=> abc + a + b + c - ab - bc - ca - 1 = 0 (thay 1 = abc)
<=> (abc - ab) + (b - bc) + (a - ca) + (c - 1) = 0
<=> ab(c - 1) - b(c - 1) - a(c - 1) + (c - 1) = 0
<=> (c - 1)(ab - b - a + 1) = 0
<=> (c - 1)[b(a - 1) - (a - 1)] = 0
<=> (c - 1)(a - 1)(b - 1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}a-1=0\\b-1=0\\c-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\) (đpcm)