cho ΔABC . gọi I,J,K là các điểm cố định bởi \(\overrightarrow{JA}+\overrightarrow{JC}=\overrightarrow{0}\), \(\overrightarrow{IB}=2\overrightarrow{AI},\overrightarrow{BK}=2\overrightarrow{BC}\)
Cho H là điểm luôn thay đổi ,L là điểm xác định bởi \(\overrightarrow{HL}=3\overrightarrow{HC}+4\overrightarrow{HB}\). chứng minh rẳng đường thẳng HL luôn đi qua 1 điểm cố định
gọi G là trọng tâm của tam giác ABC và I,J thỏa mãn \(\overrightarrow{IA}=2\overrightarrow{IB}\), \(3\overrightarrow{JA}+2\overrightarrow{JC}=\overrightarrow{0}\)
a, Phân tích \(\overrightarrow{IJ}\) theo \(\overrightarrow{AB}\) , \(\overrightarrow{AC}\)
b, chứng minh rằng IJ qua G