Cho tam giác vuông cân OAB với OA=OB=a. Hãy dựng các vecto sau đây và tính độ dài của chúng
a) OA→ + OB→
B) OA→ - OB→
C) 3OA→ + 4OB→
D) \(\dfrac{21}{4}\)OA→+\(\dfrac{5}{2}\)OB→
E) \(\dfrac{11}{4}\)OA→ - \(\dfrac{3}{7}\)OB→
Cho tam giác abc và điểm O thôi mãn:
| vecto OA|=vecto OB=|vecto OC|
Vecto OA + vecto OB+ vecto OC= vecto O
Tinh góc AOB,góc BOC,góc COA
Giúp e với ạ
cho 4 điểm A,B,C,O phân biệt có vecto OA=OB=OC=a và vecto OA+OB+OC=0
a,tính góc AOB,BOC,COA
Trong mặt phẳng Oxy, cho A (3;5) và B (2;1). Giá trị của vecto OA x vecto OB bằng bao nhiêu ?
cho tứ giác ABCD gọi I.J lần lượt là trung điểm của AB.BC.CD.DA và M . O là điểm bất kì chứng minh :
a,vecto ad + vecto bc = 2x vecto IJ
b, vecto OA + OB + OC + OD = 0
C. vecto MA + MB + MC + MD =4MO
Cho tứ giác ABCD. Giả sử tồn tại O thỏa mãn:
\(\left\{{}\begin{matrix}\left|\overrightarrow{OA}\right|=\left|\overrightarrow{OB}\right|=\left|\overrightarrow{OC}\right|=\left|\overrightarrow{OD}\right|\\\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OB}+\overrightarrow{OB}=\overrightarrow{0}\end{matrix}\right.\) . Cmr ABCD là hình chữ nhật
1. Cho hình thoi ABCD cạnh a : \(\widehat{ABC}=60^0\) , AC cắt BD tại O . Tính theo a
a. \(\left|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right|\)
b. \(\left|\overrightarrow{OA}+\overrightarrow{OB}\right|+\left|\overrightarrow{OC}+\overrightarrow{OD}\right|\)
c. \(\left|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right|+\left|\overrightarrow{OD}\right|\)
Bài 1. a. Cho tam giác ABC. Có I,J,K,L xác định sao cho:
1. \(\overrightarrow{IA}\) - \(\overrightarrow{IB}\) +3\(\overrightarrow{IC}\) =\(\overrightarrow{0}\)
2. \(\overrightarrow{KA}\) +\(\overrightarrow{KB}\) -\(\overrightarrow{KC}\) =\(\overrightarrow{0}\)
3. 2\(\overrightarrow{JA}\) + \(\overrightarrow{JB}\) +\(\overrightarrow{JC}\) =\(\overrightarrow{0}\)
4. \(\overrightarrow{LA}\) +\(\overrightarrow{LB}\) +3\(\overrightarrow{LC}\) =\(\overrightarrow{0}\)
Biểu diễn \(\overrightarrow{AI}\), \(\overrightarrow{AJ}\), \(\overrightarrow{BK}\) ,\(\overrightarrow{BL}\) theo \(\overrightarrow{AB}\), \(\overrightarrow{AC}\)
b. Với giải thiết cho như câu a. CMR:
1. với mọi O ta có \(\overrightarrow{OI}\)= \(\frac{1}{3}\)\(\overrightarrow{OA}\) + \(\overrightarrow{OC}\) - \(\frac{1}{3}\)\(\overrightarrow{OC}\)
2. với mọi O ta có \(\overrightarrow{OK}\) = \(\overrightarrow{OA}\) + \(\overrightarrow{OB}\) -\(\overrightarrow{OC}\)
3. với mọi O ta có \(\overrightarrow{OJ}\)= \(\frac{1}{2}\)\(\overrightarrow{OA}\) +\(\frac{1}{4}\)\(\overrightarrow{OB}\) + \(\frac{1}{4}\)\(\overrightarrow{OC}\)
4. với mọi O ta có \(\overrightarrow{OL}\)= \(\frac{1}{5}\)\(\overrightarrow{OA}\) + \(\frac{1}{5}\)\(\overrightarrow{OB}\) + \(\frac{3}{5}\)\(\overrightarrow{OC}\)
Bài 2. Cho tam giác ABC. Gọi I,J xác định sao cho \(\overrightarrow{IC}\) = \(\frac{3}{2}\)\(\overrightarrow{BI}\) ; \(\overrightarrow{JB}\) = \(\frac{2}{5}\)\(\overrightarrow{JC}\)
a. Tính \(\overrightarrow{AI}\),\(\overrightarrow{AJ}\) theo \(\overrightarrow{a}\)= \(\overrightarrow{AB}\), \(\overrightarrow{b}\)= \(\overrightarrow{AC}\)
b. Tính \(\overrightarrow{IJ}\) theo \(\overrightarrow{a}\),\(\overrightarrow{b}\)
Bài 3. Cho tam giác ABC, gọi I là điểm sao cho 3\(\overrightarrow{IA}\)-\(\overrightarrow{IB}\)+2\(\overrightarrow{IC}\)=\(\overrightarrow{0}\). Xác định giao điểm của
a. AI và BC
b. IB và CA
c. IC và AB