Cho có AB = AC. D là trung điểm của BC.
a) Chứng minh: = và AD là tia phân giác của .
b) Vẽ tại M. Trên cạnh Ac lấy điểm N sao cho AN = AM. Chứng minh: = và .
c) Gọi K là trung điểm của NC. Trên tia DK lấy điểm E sao cho K là trung điểm của DE. Chứng minh: = .
d) Chứng minh: MN // BC và 3 điểm M, N, E thẳng hàng.
Cho \(\Delta ABC\) có AB = AC. D là trung điểm của BC.
a) Chứng minh: \(\Delta ADB\) = \(\Delta ADC\) và AD là tia phân giác của \(\widehat{BAC}\).
b) Vẽ \(DC\perp AD\) tại M. Trên cạnh Ac lấy điểm N sao cho AN = AM. Chứng minh: \(\Delta AMD\) = \(\Delta AND\) và \(DC\perp AN\).
c) Gọi K là trung điểm của NC. Trên tia DK lấy điểm E sao cho K là trung điểm của DE. Chứng minh: \(\Delta KCD\) = \(\Delta KNE\).
d) Chứng minh: MN // BC và 3 điểm M, N, E thẳng hàng.