Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Thu Hà
Xem chi tiết
Phạm Thị Thu Hà
20 tháng 7 2023 lúc 17:10

@ Nguyễn Thị Thương Hoài

Giúp em với ạ.

 

Tìm \(x\); y nguyên hay thế nào em 

Phạm Thị Thu Hà
20 tháng 7 2023 lúc 17:19

nguyên ạ

 

Bùi Đức Thắng
Xem chi tiết
Thảo Vũ
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 7 2021 lúc 13:44

Đề là: \(P=x^3+y^3-\dfrac{x^2+y^2}{\left(x-1\right)\left(y-1\right)}\)

Hay \(P=\dfrac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\) 

Cái nào em nhỉ?

Nguyễn Việt Lâm
24 tháng 7 2021 lúc 8:37

\(P=\dfrac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}=\dfrac{x^3-x^2+y^3-y^2}{\left(x-1\right)\left(y-1\right)}=\dfrac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)

\(P=\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)

Ta có:

\(\dfrac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\dfrac{4x^2\left(y-1\right)}{y-1}}=4x\)

Tương tự: \(\dfrac{y^2}{x-1}+4\left(x-1\right)\ge4y\)

Cộng vế:

\(P+4\left(x+y\right)-8\ge4\left(x+y\right)\)

\(\Rightarrow P\ge8\)

\(P_{min}=8\) khi \(x=y=2\)

hello7156
Xem chi tiết
Akai Haruma
22 tháng 12 2021 lúc 10:16

Lời giải:
Theo hằng đẳng thức đáng nhớ thì:
$x^3+y^3+xy=(x+y)(x^2-xy+y^2)+xy=x^2-xy+y^2+xy$

$=x^2+y^2=\frac{1}{2}[(x+y)^2+(x-y)^2]\geq \frac{1}{2}(x+y)^2=\frac{1}{2}$
Vậy GTNN của biểu thức là $\frac{1}{2}$. Giá trị này đạt tại $x+y=1$ và $x-y=0$

$\Leftrightarrow x=y=\frac{1}{2}$

Nguyễn Lê Thảo Linh
Xem chi tiết
HT.Phong (9A5)
12 tháng 8 2023 lúc 10:51

Ta có:

VT: \(\left(xy+1\right)\left(x^2y^2-xy+1\right)+\left(x^3-1\right)\left(1-y^3\right)\)

\(=\left(xy\right)^3+1^3+x^3-x^3y^3-1+y^3\)

\(=x^3y^3+1+x^3-x^3y^3-1+y^3\)

\(=\left(x^3y^3-x^3y^3\right)+\left(1-1\right)+\left(x^3+y^3\right)\)

\(=x^3+y^3=VP\left(dpcm\right)\)

Kwalla
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
3 tháng 10 2023 lúc 5:19

`#3107.101107`

`D = x^3 - y^3 - 3xy` biết `x - y - 1 = 0`

Ta có:

`x - y - 1 = 0`

`=> x - y = 1`

`D = x^3 - y^3 - 3xy`

`= (x - y)(x^2 + xy + y^2) - 3xy`

`= 1 * (x^2 + xy + y^2) - 3xy`

`= x^2+ xy + y^2 - 3xy`

`= x^2 - 2xy + y^2`

`= x^2 - 2*x*y + y^2`

`= (x - y)^2`

`= 1^2 = 1`

Vậy, với `x - y = 1` thì `D = 1`

________

`E = x^3 + y^3` với `x + y = 5; x^2 + y^2 = 17`

`x + y = 5`

`=> (x + y)^2 = 25`

`=> x^2 + 2xy + y^2 = 25`

`=> 2xy = 25 - (x^2 + y^2)`

`=> 2xy = 25 - 17`

`=> 2xy = 8`

`=> xy = 4`

Ta có:

`E = x^3 + y^3`

`= (x + y)(x^2 - xy + y^2)`

`= 5 * [ (x^2 + y^2) - xy]`

`= 5 * (17 - 4)`

`= 5 * 13`

`= 65`

Vậy, với `x + y = 5; x^2 + y^2 = 17` thì `E = 65`

________

`F = x^3 - y^3` với `x - y = 4; x^2 + y^2 = 26`

Ta có:

`x - y = 4`

`=> (x - y)^2 = 16`

`=> x^2 - 2xy + y^2 = 16`

`=> (x^2 + y^2) - 2xy = 16`

`=> 2xy = (x^2 + y^2) - 16`

`=> 2xy = 26 - 16`

`=> 2xy = 10`

`=> xy = 5`

Ta có:

`F = x^3 - y^3`

`= (x - y)(x^2 + xy + y^2)`

`= 4 * [ (x^2 + y^2) + xy]`

`= 4 * (26 + 5)`

`= 4*31`

`= 124`

Vậy, với `x - y = 4; x^2 + y^2 = 26` thì `F = 124.`

nguyễn hữu kim
Xem chi tiết
Nguyễn Đức Trí
3 tháng 8 2023 lúc 17:40

a) \(\left(x-5\right)^2=\left(3+2x\right)^2\)

\(\Rightarrow\left(3+2x\right)^2-\left(x-5\right)^2=0\)

\(\Rightarrow\left(3+2x+x-5\right)\left(3+2x-x+5\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(x+8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-8\end{matrix}\right.\)

b) \(27x^3-54x^2+36x=9\)

\(\Rightarrow27x^3-54x^2+36x-9=0\)

\(\Rightarrow27x^3-54x^2+36x-8+8-9=0\)

\(\Rightarrow\left(3x-2\right)^3-1=0\)

\(\Rightarrow\left(3x-2-1\right)\left[\left(3x-2\right)^2+3x-2+1\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-2\right)^2+3x-2+\dfrac{1}{4}-\dfrac{1}{4}+1\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\left(1\right)\)

mà \(\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)

\(\left(1\right)\Rightarrow3x-3=0\Rightarrow3x=3\Rightarrow x=1\)

(\(x-5\))2 = (3 +2\(x\))2 ⇒ \(\left[{}\begin{matrix}x-5=3+2x\\x-5=-3-2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-8\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x\in\){-8; \(\dfrac{2}{3}\)}

  27\(x^3\) - 54\(x^2\) + 36\(x\) = 9

27\(x^3\) - 54\(x^2\) + 36\(x\) - 8 = 1

(3\(x\) - 2)3 = 1 ⇒ 3\(x\) - 2 = 1 ⇒ \(x\) = 1

 

 

 

 

 

Mạnh Dũng
3 tháng 8 2023 lúc 17:47

1

nguyễn hữu kim
Xem chi tiết
Kiều Vũ Linh
3 tháng 8 2023 lúc 17:17

(x - 5)² = (3 + 2x)²

(x - 5)² - (3 + 2x)² = 0

[(x - 5) - (3 + 2x)][(x - 5) + (3 + 2x)] = 0

(x - 5 - 3 - 2x)(x - 5 + 3 + 2x) = 0

(-x - 8)(3x - 2) = 0

-x - 8 = 0 hoặc 3x - 2 = 0

*) -x - 8 = 0

-x = 8

x = -8

*) 3x - 2 = 0

3x = 2

x = 2/3

Vậy x = -8; x = 2/3

--------------------

27x³ - 54x² + 36x = 9

27x³ - 54x² + 36x - 9 = 0

27x³ - 27x² - 27x² + 27x + 9x - 9 = 0

(27x³ - 27x²) - (27x² - 27x) + (9x - 9) = 0

27x²(x - 1) - 27x(x - 1) + 9(x - 1) = 0

(x - 1)(27x² - 27x + 9) = 0

x - 1 = 0 hoặc 27x² - 27x + 9 = 0

*) x - 1 = 0

x = 1

*) 27x² - 27x + 9 = 0

Ta có:

27x² - 27x + 9

= 27(x² - x + 1/3)

= 27(x² - 2.x.1/2 + 1/4 + 1/12)

= 27[(x - 1/2)² + 1/12] > 0 với mọi x ∈ R

⇒ 27x² - 27x + 9 = 0 (vô lí)

Vậy x = 1

Kiều Vũ Linh
3 tháng 8 2023 lúc 17:48

A = x² + y²

= x² - 2xy + y² + 2xy

= (x - y)² + 2xy

= 4² + 2.1

= 16 + 2

= 18

B = x³ - y³

= (x - y)(x² + xy + y²)

= (x - y)(x² - 2xy + y² + xy + 2xy)

= (x - y)[(x - y)² + 3xy]

= 4.(4² + 3.1)

= 4.(16 + 3)

= 4.19

= 76

C = x⁴ + y⁴

= (x²)² + (y²)²

= (x²)² + 2x²y² + (y²)² - 2x²y²

= (x² + y²)² - 2x²y²

= (x² - 2x²y² + y² + 2x²y²)² - 2x²y²

= [(x - y)² + 2x²y²]² - 2x²y²

= (4² + 2.1²)² - 2.1²

= (16 + 2)² - 2

= 18² - 2

= 324 - 2

= 322

Nguyễn Lê Phước Thịnh
3 tháng 8 2023 lúc 17:14

a: =>(2x+3)^2-(x-5)^2=0

=>(2x+3+x-5)(2x+3-x+5)=0

=>(x+8)(3x-2)=0

=>x=2/3 hoặc x=-8

b: =>27x^3-54x^2-36x-9=0

=>3x^3-6x^2-4x-1=0

=>\(x\simeq2,57\)

c: A=x^2+y^2=(x-y)^2+2xy=4^2+2=18

B=x^3-y^3=(x-y)^3+3xy(x-y)

=4^3+3*1*4

=64+12=76

C=(x^2+y^2)^2-2x^2y^2

=18^2-2*1^2=322

TĐLT
Xem chi tiết
Dieren
Xem chi tiết