Tính
\(C=cos\dfrac{\pi}{5}+cos\dfrac{2\pi}{5}+cos\dfrac{3\pi}{5}+...+cos\dfrac{9\pi}{5}\)
tính \(A=cos\dfrac{\pi}{11}.cos\dfrac{3\pi}{11}.cos\dfrac{5\pi}{11}.....cos\dfrac{9\pi}{11}\)
\(A=cos\dfrac{\pi}{11}.cos\dfrac{3\pi}{11}.cos\dfrac{5\pi}{11}.cos\left(\pi-\dfrac{4\pi}{11}\right)cos\left(\pi-\dfrac{2\pi}{11}\right)\)
\(=cos\dfrac{\pi}{11}.cos\dfrac{3\pi}{11}cos\dfrac{5\pi}{11}\left(-cos\dfrac{4\pi}{11}\right)\left(-cos\dfrac{2\pi}{11}\right)\)
\(=cos\dfrac{\pi}{11}cos\dfrac{2\pi}{11}cos\dfrac{3\pi}{11}cos\dfrac{4\pi}{11}cos\dfrac{5\pi}{11}\)
\(\Rightarrow2A.sin\dfrac{\pi}{11}=2sin\dfrac{\pi}{11}cos\dfrac{\pi}{11}cos\dfrac{2\pi}{11}cos\dfrac{4\pi}{11}cos\dfrac{3\pi}{11}cos\dfrac{5\pi}{11}\)
\(=sin\dfrac{2\pi}{11}cos\dfrac{2\pi}{11}cos\dfrac{4\pi}{11}cos\dfrac{3\pi}{11}cos\dfrac{5\pi}{11}\)
\(=\dfrac{1}{2}sin\dfrac{4\pi}{11}cos\dfrac{4\pi}{11}cos\dfrac{3\pi}{11}cos\dfrac{5\pi}{11}\)
\(=\dfrac{1}{4}sin\dfrac{8\pi}{11}.cos\dfrac{3\pi}{11}.cos\left(\pi-\dfrac{6\pi}{11}\right)\)
\(=-\dfrac{1}{4}sin\left(\pi-\dfrac{3\pi}{11}\right)cos\dfrac{3\pi}{11}cos\dfrac{6\pi}{11}=-\dfrac{1}{4}sin\dfrac{3\pi}{11}cos\dfrac{3\pi}{11}cos\dfrac{6\pi}{11}\)
\(=-\dfrac{1}{8}sin\dfrac{6\pi}{11}cos\dfrac{6\pi}{11}=-\dfrac{1}{16}sin\dfrac{12\pi}{11}=-\dfrac{1}{16}sin\left(\pi+\dfrac{\pi}{11}\right)\)
\(=\dfrac{1}{16}sin\dfrac{\pi}{11}\)
\(\Rightarrow A=\dfrac{1}{32}\)
Tính giá trị của biểu thức:
A= \(\dfrac{cos\dfrac{9\pi}{5}-cos\dfrac{6\pi}{5}+cos\dfrac{11\pi}{5}}{cos\dfrac{3\pi}{10}-sin\dfrac{6\pi}{5}}.tan\dfrac{16\pi}{5}\).
Tính
A = \(\dfrac{1}{cos\dfrac{\pi}{7}}+\dfrac{1}{cos\dfrac{3\pi}{7}}+\dfrac{1}{cos\dfrac{5\pi}{7}}\)
A\(=\dfrac{cos\dfrac{5\pi}{7}.cos\dfrac{3\pi}{7}+cos\dfrac{5\pi}{7}.cos\dfrac{\pi}{7}+cos\dfrac{3\pi}{7}.cos\dfrac{\pi}{7}}{cos\dfrac{\pi}{7}.cos\dfrac{3\pi}{7}.cos\dfrac{5\pi}{7}}\)
Đặt tử là Y; mẫu là U
Có \(Y=\)\(cos\dfrac{5\pi}{7}.cos\dfrac{3\pi}{7}+\left(cos\dfrac{5\pi}{7}.cos\dfrac{\pi}{7}+cos\dfrac{3\pi}{7}.cos\dfrac{\pi}{7}\right)\)
\(=cos\left(\pi-\dfrac{2\pi}{7}\right).cos\left(\pi-\dfrac{4\pi}{7}\right)+cos\dfrac{\pi}{7}\left(cos\dfrac{5\pi}{7}+cos\dfrac{3\pi}{7}\right)\)
\(=cos\dfrac{2\pi}{7}.cos\dfrac{4\pi}{7}+cos\dfrac{\pi}{7}.2cos\dfrac{4\pi}{7}.cos\dfrac{\pi}{7}\)\(=cos\dfrac{2\pi}{7}.cos\dfrac{4\pi}{7}+2.cos^2\dfrac{\pi}{7}.cos\dfrac{4\pi}{7}\)
\(=cos\dfrac{2\pi}{7}.cos\dfrac{4\pi}{7}+\left(cos\dfrac{2\pi}{7}+1\right).cos\dfrac{4\pi}{7}\)\(=2.cos\dfrac{2\pi}{7}.cos\dfrac{4\pi}{7}+cos\dfrac{4\pi}{7}\)
\(=cos\dfrac{6\pi}{7}+cos\dfrac{2\pi}{7}+cos\dfrac{4\pi}{7}\)
\(\Rightarrow sin\dfrac{\pi}{7}.Y=sin\dfrac{\pi}{7}.cos\dfrac{2\pi}{7}+sin\dfrac{\pi}{7}.cos\dfrac{4\pi}{7}+sin\dfrac{\pi}{7}.cos\dfrac{6\pi}{7}\)
\(=\dfrac{1}{2}\left(-sin\dfrac{\pi}{7}+sin\dfrac{3\pi}{7}\right)+\dfrac{1}{2}\left(-sin\dfrac{3\pi}{7}+sin\dfrac{5\pi}{7}\right)+\dfrac{1}{2}\left(-sin\dfrac{5\pi}{7}+sin\pi\right)\)
\(=\dfrac{1}{2}\left(sin\pi-sin\dfrac{\pi}{7}\right)\)\(=-\dfrac{1}{2}sin\dfrac{\pi}{7}\)
\(\Rightarrow Y=-\dfrac{1}{2}\)
Có \(sin\dfrac{\pi}{7}.U=sin\dfrac{\pi}{7}.cos\dfrac{\pi}{7}.cos\dfrac{3\pi}{5}.cos\dfrac{5\pi}{7}\)
\(=\dfrac{1}{2}.sin\dfrac{2\pi}{7}.cos\left(\pi-\dfrac{2\pi}{7}\right).cos\dfrac{3\pi}{5}\)
\(=-\dfrac{1}{4}.sin\dfrac{4\pi}{7}.cos\left(\pi-\dfrac{4\pi}{5}\right)\)
\(=\dfrac{1}{8}.sin\dfrac{8\pi}{7}\)\(=\dfrac{1}{8}.sin\left(\pi+\dfrac{\pi}{7}\right)=-\dfrac{1}{8}.sin\dfrac{\pi}{7}\)
\(\Rightarrow U=-\dfrac{1}{8}\)
Vậy \(A=\dfrac{Y}{U}=4\)
Rút gọn:
C= \(sin^2\dfrac{\pi}{3}+sin^2\dfrac{5\pi}{6}+sin^2\dfrac{\pi}{9}+sin^2\dfrac{11\pi}{18}+sin^2\dfrac{13\pi}{18}+sin^2\dfrac{2\pi}{9}\)
D=\(cos\left(x-\dfrac{\pi}{3}\right).cos\left(x+\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{6}\right).cos\left(x+\dfrac{3\pi}{4}\right)\)
1; tính B \(=4sin^4\dfrac{\pi}{16}+2cos\dfrac{\pi}{8}\)
2;tính C= \(\dfrac{\sin\dfrac{\pi}{5}-\sin\dfrac{2\pi}{15}}{\cos\dfrac{\pi}{5}-\cos\dfrac{2\pi}{15}}\)
3; tính D=\(\sin\dfrac{\pi}{9}-sin\dfrac{5\pi}{9}+sin\dfrac{7\pi}{9}\)
\(cos\dfrac{\pi}{5}+cos\dfrac{3\pi}{5}\)
\(=2\cdot cos\left(\dfrac{\dfrac{3}{5}pi+\dfrac{1}{5}pi}{2}\right)\cdot cos\left(\dfrac{\dfrac{3}{5}pi-\dfrac{1}{5}pi}{2}\right)\)
\(=2\cdot cos\left(\dfrac{2}{5}pi\right)\cdot cos\left(\dfrac{1}{5}pi\right)\)
Giải các phương trình lượng giác:
a) \(sin4x-cos\left(x+\dfrac{\pi}{6}\right)=0\)
b) \(cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)
c) \(cos4x=cos\dfrac{5\pi}{12}\)
d) \(cos^2x=1\)
d: cos^2x=1
=>sin^2x=0
=>sin x=0
=>x=kpi
a: =>sin 4x=cos(x+pi/6)
=>sin 4x=sin(pi/2-x-pi/6)
=>sin 4x=sin(pi/3-x)
=>4x=pi/3-x+k2pi hoặc 4x=2/3pi+x+k2pi
=>x=pi/15+k2pi/5 hoặc x=2/9pi+k2pi/3
b: =>x+pi/3=pi/6+k2pi hoặc x+pi/3=-pi/6+k2pi
=>x=-pi/2+k2pi hoặc x=-pi/6+k2pi
c: =>4x=5/12pi+k2pi hoặc 4x=-5/12pi+k2pi
=>x=5/48pi+kpi/2 hoặc x=-5/48pi+kpi/2
CMR \(cos\dfrac{\pi}{5}-cos\dfrac{2\pi}{5}=\dfrac{1}{2}\)
\(cos\dfrac{\pi}{5}-cos\dfrac{2\pi}{5}\)
\(=-2.sin\dfrac{3\pi}{10}.sin\left(-\dfrac{\pi}{10}\right)\)
\(=2.sin\left(\dfrac{1}{2}-\dfrac{\pi}{5}\right).sin\dfrac{\pi}{10}\)
\(=2.sin\dfrac{\pi}{10}.cos\dfrac{\pi}{5}=\dfrac{sin\dfrac{\pi}{5}.cos\dfrac{\pi}{5}}{cos\dfrac{\pi}{10}}\)
\(=\dfrac{\dfrac{1}{2}sin\dfrac{2\pi}{5}}{cos\left(\dfrac{\pi}{2}-\dfrac{2\pi}{5}\right)}=\dfrac{\dfrac{1}{2}.sin\dfrac{2\pi}{5}}{sin\dfrac{2\pi}{5}}\)\(=\dfrac{1}{2}\)
=−2.sin3π10.sin(−π10)=−2.sin3π10.sin(−π10)
=2.sinπ10.cosπ5=sinπ5.cosπ5cosπ10=2.sinπ10.cosπ5=sinπ5.cosπ5cosπ10
=12
giải phương trình
a) \(cos3x=8\)
b) \(-2cosx+\sqrt{3}=0\)
c) \(cos\left(3x-\dfrac{\pi}{6}\right)=0\)
d) \(cos\left(x+\dfrac{2\pi}{3}\right)=cos\dfrac{\pi}{5}\)
e) \(cos^23x=4\)
a: cos3x=8
mà -1<=cos3x<=1
nên \(x\in\varnothing\)
b; \(-2\cdot cosx+\sqrt{3}=0\)
=>\(-2\cdot cosx=-\sqrt{3}\)
=>\(cosx=\dfrac{\sqrt{3}}{2}\)
=>x=pi/6+k2pi hoặc x=-pi/6+k2pi
c: cos(3x-pi/6)=0
=>3x-pi/6=pi/2+k2pi
=>3x=2/3pi+k2pi
=>x=2/9pi+k2pi/3
d: cos(x+2/3pi)=cos(pi/5)
=>x+2/3pi=pi/5+k2pi hoặc x+2/3pi=-pi/5+k2pi
=>x=-7/15pi+k2pi hoặc x=-13/15pi+k2pi
e: cos^2(3x)=4
=>cos3x=2(loại) hoặc cos3x=-2(loại)
Giải các phương trình sau:
\(a,cos3x-4cos2x+3cosx-4=0\)
\(b,cos\left(x+\dfrac{\pi}{5}\right).cos\left(x-\dfrac{\pi}{5}\right)=cos\left(\dfrac{2\pi}{5}\right)\)