\(=2\cdot cos\left(\dfrac{\dfrac{3}{5}pi+\dfrac{1}{5}pi}{2}\right)\cdot cos\left(\dfrac{\dfrac{3}{5}pi-\dfrac{1}{5}pi}{2}\right)\)
\(=2\cdot cos\left(\dfrac{2}{5}pi\right)\cdot cos\left(\dfrac{1}{5}pi\right)\)
\(=2\cdot cos\left(\dfrac{\dfrac{3}{5}pi+\dfrac{1}{5}pi}{2}\right)\cdot cos\left(\dfrac{\dfrac{3}{5}pi-\dfrac{1}{5}pi}{2}\right)\)
\(=2\cdot cos\left(\dfrac{2}{5}pi\right)\cdot cos\left(\dfrac{1}{5}pi\right)\)
Giải các phương trình sau:
\(a,cos3x-4cos2x+3cosx-4=0\)
\(b,cos\left(x+\dfrac{\pi}{5}\right).cos\left(x-\dfrac{\pi}{5}\right)=cos\left(\dfrac{2\pi}{5}\right)\)
Tìm các giá trị lượng giác, biết:
a) \(cos\alpha=\dfrac{2}{\sqrt{5}}\); \(-\dfrac{\pi}{2}< \alpha< 0\)
b) \(sinx=\dfrac{3}{5};\dfrac{\pi}{2}< x< \pi\)
c) \(tanx=\dfrac{4}{5};-\pi< x< -\dfrac{\pi}{2}\)
d) \(cotx=-\dfrac{3}{4};\dfrac{3\pi}{2}< x< \pi\)
e) \(tanx=\dfrac{4}{5};\pi< x< \dfrac{3\pi}{2}\)
f) \(cosx=\dfrac{4}{5};270^o< x< 360^o\)
g) \(sinx=-\dfrac{3}{5};180^o< x< 270^o\)
\(cos^2\dfrac{\pi}{7}+cos^2\dfrac{2\pi}{7}+cos^2\dfrac{3\pi}{7}\)
Giải phương trình lượng giác
cos 2(x + \(\dfrac{\Pi}{3}\)) +4cos ( \(\dfrac{\Pi}{6}\)-x) =\(\dfrac{5}{6}\)
Tìm nghiệm của các phương trinh:
1,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
2,\(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}\left(1+cot2xcotx\right)=0\)
3,\(cos^4x+sin^4x+cos\left(x-\dfrac{\pi}{4}\right)sin\left(3x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
4,\(cos5x+cos2x+2sin3xsin2x=0\) trên \(\left[0;2\pi\right]\)
5,\(\dfrac{cos\left(cosx+2sinx\right)+3sinx\left(sinx+\sqrt{2}\right)}{sin2x-1}=1\)
6,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
7,\(cos\left(2x+\dfrac{\pi}{4}\right)+cos\left(2x-\dfrac{\pi}{4}\right)+4sinx=2+\sqrt{2}\left(1-sinx\right)\)
2. CM:
a1) \(\dfrac{\sin110}{\cos110}\)+ \(\dfrac{\cos20}{\sin20}\)=0
a2) sin2x + sin2(\(\dfrac{\pi}{3}\)-x) + sinx . sin(\(\dfrac{\pi}{3}\)-x)= \(\dfrac{3}{4}\)
a3) sin2x + cos(\(\dfrac{\pi}{3}\)-x).cos(\(\dfrac{\pi}{3}\)+x) = \(\dfrac{3}{4}\)
1) sin2x + 2cosx = 0
2) sin(2x -10*) = \(\dfrac{1}{2}\) (-120* <x< 90*)
3) cos(2x+10*)= \(\dfrac{\sqrt{2}}{2}\)(-180*<x<180*)
4) \(\sin^2\left(5x+\dfrac{2\pi}{5}\right)-\cos^2\)(\(\dfrac{x}{4}-\pi\)) =0
Giải phương trình:
1) \(cos\left(2x + \dfrac{\pi}{6}\right) = cos\left(\dfrac{\pi}{3} - 3x\right)\)
2) \(sin\left(2x + \dfrac{\pi}{6}\right) = sin\left(\dfrac{\pi}{3} - 3x\right)\)
bài 1: a) \(sin\left(2x+\dfrac{\pi}{6}\right)+sin\left(x-\dfrac{\pi}{3}\right)=0\)
b) \(sin\left(2x-\dfrac{\pi}{3}\right)-cos\left(x+\dfrac{\pi}{3}\right)=0\)
c) \(sin\left(2x+\dfrac{\pi}{3}\right)+cos\left(x-\dfrac{\pi}{6}\right)=0\)